Logo Header
  1. Môn Toán
  2. Giải bài 8 trang 82 sách bài tập toán 9 - Chân trời sáng tạo tập 2

Giải bài 8 trang 82 sách bài tập toán 9 - Chân trời sáng tạo tập 2

Giải bài 8 trang 82 Sách bài tập Toán 9 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 8 trang 82 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Từ điểm A nằm ngoài đường tròn (O), vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B, C là tiếp điểm). Kẻ đường kính CD của đường tròn (O), đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là M. Gọi H là giao điểm của AO và BC. Chứng minh (widehat {AHC} = {90^o}) và tứ giác AMHC nội tiếp đường tròn.

Đề bài

Từ điểm A nằm ngoài đường tròn (O), vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B, C là tiếp điểm). Kẻ đường kính CD của đường tròn (O), đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là M. Gọi H là giao điểm của AO và BC. Chứng minh \(\widehat {AHC} = {90^o}\) và tứ giác AMHC nội tiếp đường tròn.

Phương pháp giải - Xem chi tiếtGiải bài 8 trang 82 sách bài tập toán 9 - Chân trời sáng tạo tập 2 1

Chứng minh tam giác AMC và tam giác AHC nội tiếp đường tròn đường kính AC. Từ đó suy ra AMHC nội tiếp đường tròn.

Lời giải chi tiết

Giải bài 8 trang 82 sách bài tập toán 9 - Chân trời sáng tạo tập 2 2

Ta có AB = AC (tính chất hai tiếp tuyến cắt nhau); OC = OB = R.

Suy ra OA là đường trung trực của đoạn thẳng BC, suy ra \(\widehat {AHC} = {90^o}\).

Ta có \(\widehat {CMD} = {90^o}\) (góc nội tiếp chắn nửa đường tròn), suy ra \(\widehat {AMC} = {90^o}\).

Tam giác AMC vuông tại M và tam giác AHC vuông tại H cùng nội tiếp đường tròn đường kính AC.

Do đó, tứ giác AMHC nội tiếp đường tròn đường kính AC.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 8 trang 82 sách bài tập toán 9 - Chân trời sáng tạo tập 2 đặc sắc thuộc chuyên mục bài tập toán 9 trên nền tảng học toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 8 trang 82 Sách bài tập Toán 9 - Chân trời sáng tạo tập 2: Tổng quan

Bài 8 trang 82 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 thuộc chương trình học về hàm số bậc nhất. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về hàm số để giải quyết các bài toán thực tế, hoặc chứng minh các tính chất liên quan đến hàm số.

Nội dung bài 8 trang 82

Bài 8 thường bao gồm các dạng bài tập sau:

  • Xác định hàm số: Cho một công thức, yêu cầu xác định xem công thức đó có phải là hàm số bậc nhất hay không.
  • Tìm hệ số góc và tung độ gốc: Cho hàm số bậc nhất, yêu cầu tìm hệ số góc và tung độ gốc.
  • Xác định đường thẳng: Cho các yếu tố như điểm đi qua, hệ số góc, hoặc hai điểm, yêu cầu xác định phương trình đường thẳng.
  • Ứng dụng hàm số vào bài toán thực tế: Giải các bài toán liên quan đến vận tốc, thời gian, quãng đường, hoặc các đại lượng thay đổi tuyến tính khác.

Lời giải chi tiết bài 8 trang 82

Để giúp bạn hiểu rõ hơn về cách giải bài 8 trang 82, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài tập. Lưu ý rằng, đây chỉ là một ví dụ, và bạn có thể áp dụng các phương pháp tương tự để giải các bài tập khác.

Ví dụ 1: Xác định hàm số

Cho hàm số y = 2x + 3. Hãy xác định xem hàm số này có phải là hàm số bậc nhất hay không?

Lời giải:

Hàm số y = 2x + 3 là hàm số bậc nhất vì nó có dạng y = ax + b, trong đó a = 2 và b = 3. Hệ số a khác 0.

Ví dụ 2: Tìm hệ số góc và tung độ gốc

Cho hàm số y = -x + 5. Hãy tìm hệ số góc và tung độ gốc của hàm số.

Lời giải:

Hàm số y = -x + 5 có hệ số góc a = -1 và tung độ gốc b = 5.

Ví dụ 3: Xác định đường thẳng

Tìm phương trình đường thẳng đi qua điểm A(1; 2) và có hệ số góc m = 3.

Lời giải:

Phương trình đường thẳng có dạng y = mx + b. Thay điểm A(1; 2) và m = 3 vào phương trình, ta có:

2 = 3 * 1 + b

=> b = -1

Vậy phương trình đường thẳng là y = 3x - 1.

Mẹo giải bài tập hàm số bậc nhất

  • Nắm vững định nghĩa: Hiểu rõ định nghĩa của hàm số bậc nhất và các yếu tố liên quan (hệ số góc, tung độ gốc).
  • Vận dụng các công thức: Sử dụng các công thức để tính toán hệ số góc, tung độ gốc, hoặc phương trình đường thẳng.
  • Vẽ đồ thị: Vẽ đồ thị hàm số để hình dung rõ hơn về tính chất của hàm số.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập.

Tài liệu tham khảo

Để học tốt hơn về hàm số bậc nhất, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 9 - Chân trời sáng tạo
  • Sách bài tập Toán 9 - Chân trời sáng tạo
  • Các trang web học toán online uy tín

Kết luận

Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn khi giải bài 8 trang 82 sách bài tập Toán 9 - Chân trời sáng tạo tập 2. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 9