Logo Header
  1. Môn Toán
  2. Giải bài 10 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 10 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 10 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo

Bài 10 trang 103 SGK Toán 10 tập 1 Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 10 trang 103 SGK Toán 10 tập 1 Chân trời sáng tạo, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB.

Đề bài

Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB. Chứng minh rằng \(\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} = \frac{3}{2}\overrightarrow {MO} \).

Phương pháp giải - Xem chi tiếtGiải bài 10 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo 1

Bước 1: Qua M kẻ các đường thẳng song song với AB, AC, BC.

Bước 2: Xác định các tam giác đều, hình bình hành sau đó áp dụng vào biểu thức vectơ, trong tam giác đều thì đường cao vừa là trung tuyến, quy tắc hình bình hành \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \) (với ABCD là hình bình hành).

Bước 3: Sử dụng quy tắc ba điểm \(\overrightarrow {AB} = \overrightarrow {AO} + \overrightarrow {OB} \), tính chất trọng tâm của tam giác \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \) (với G là trọng tâm của tam giác ABC).

Lời giải chi tiết

Giải bài 10 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo 2

\(\overrightarrow {MD} {\rm{\;}} + \overrightarrow {ME} {\rm{\;}} + \overrightarrow {MF} {\rm{\;}} = \left( {\overrightarrow {MO} {\rm{\;}} + \overrightarrow {OD} } \right) + \left( {\overrightarrow {MO} {\rm{\;}} + \overrightarrow {OE} } \right) + \left( {\overrightarrow {MO} {\rm{\;}} + \overrightarrow {OF} } \right)\) (quy tắc ba điểm).

Qua M kẻ các đường thẳng \({M_1}{M_2}//AB;{M_3}{M_4}//AC;{M_5}{M_6}//BC\).

Từ đó ta có: \(\widehat {M{M_1}{M_6}} = \widehat {M{M_6}{M_1}} = \widehat {M{M_4}{M_2}} = \widehat {M{M_2}{M_4}} = \widehat {M{M_3}{M_5}} = \widehat {M{M_5}{M_3}} = {60^\circ }\) (góc so le trong với các góc của tam giác đều).

Suy ra các tam giác \(\Delta M{M_3}{M_5},\Delta M{M_1}{M_6},\Delta M{M_2}{M_4}\) đều.

Do đó MD, ME, MF là các đường cao, đồng thời là đường trung tuyến của các tam giác đều trên.

Áp dụng tính chất đường trung tuyến, ta có:

\(\overrightarrow {ME} {\rm{\;}} = \frac{1}{2}\left( {\overrightarrow {M{M_1}} {\rm{\;}} + \overrightarrow {M{M_6}} } \right);\overrightarrow {MD} {\rm{\;}} = \frac{1}{2}\left( {\overrightarrow {M{M_2}} {\rm{\;}} + \overrightarrow {M{M_4}} } \right);\overrightarrow {MF} {\rm{\;}} = \frac{1}{2}\left( {\overrightarrow {M{M_3}} {\rm{\;}} + \overrightarrow {M{M_5}} } \right)\)

\( \Rightarrow \overrightarrow {MD} {\rm{\;}} + \overrightarrow {ME} {\rm{\;}} + \overrightarrow {MF} {\rm{\;}} = \frac{1}{2}\left( {\overrightarrow {M{M_2}} {\rm{\;}} + \overrightarrow {M{M_4}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_1}} {\rm{\;}} + \overrightarrow {M{M_6}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_3}} {\rm{\;}} + \overrightarrow {M{M_5}} } \right)\)

\( = \frac{1}{2}\left( {\overrightarrow {M{M_1}} {\rm{\;}} + \overrightarrow {M{M_3}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_2}} {\rm{\;}} + \overrightarrow {M{M_5}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_4}} {\rm{\;}} + \overrightarrow {M{M_6}} } \right)\) (hoán vị)

\( = \frac{1}{2}\overrightarrow {MA} {\rm{\;}} + \frac{1}{2}\overrightarrow {MB} {\rm{\;}} + \frac{1}{2}\overrightarrow {MC} {\rm{\;}}\) (quy tắc hình bình hành, dễ dàng chứng minh các tứ giác \(A{M_3}M{M_1};C{M_4}M{M_6};B{M_2}M{M_5}\) là hình bình hành do có các cặp cạnh đối song song).

\( = \frac{1}{2}\left( {\overrightarrow {MA} {\rm{\;}} + \overrightarrow {MB} {\rm{\;}} + \overrightarrow {MC} } \right)\)

\( = \frac{1}{2}\left( {\left( {\overrightarrow {MO} {\rm{\;}} + \overrightarrow {OA} } \right) + \left( {\overrightarrow {MO} {\rm{\;}} + \overrightarrow {OB} } \right) + \left( {\overrightarrow {MO} {\rm{\;}} + \overrightarrow {OC} } \right)} \right)\) (quy tắc ba điểm)

\( = \frac{1}{2}\left( {3\overrightarrow {MO} {\rm{\;}} + \left( {\overrightarrow {OA} {\rm{\;}} + \overrightarrow {OB} {\rm{\;}} + \overrightarrow {OC} } \right)} \right)\)

\( = \frac{3}{2}\left( {\overrightarrow {MO} + \overrightarrow 0 } \right)\) (tính chất trọng tâm)

Vậy \(\overrightarrow {MD} {\rm{\;}} + \overrightarrow {ME} {\rm{\;}} + \overrightarrow {MF} {\rm{\;}} = \frac{3}{2}\overrightarrow {MO} \).

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 10 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo đặc sắc thuộc chuyên mục toán lớp 10 trên nền tảng soạn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 10 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo: Hướng dẫn chi tiết

Bài 10 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo thuộc chương trình học về vectơ trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng.
  • Ứng dụng của vectơ trong hình học: Chứng minh tính chất hình học, giải bài toán về khoảng cách, diện tích.

Nội dung bài tập: Bài 10 yêu cầu học sinh sử dụng kiến thức về vectơ để giải quyết một bài toán cụ thể liên quan đến hình học. Bài toán thường yêu cầu chứng minh một đẳng thức vectơ, tìm một điểm thỏa mãn một điều kiện nào đó, hoặc tính một độ dài, diện tích.

Lời giải chi tiết bài 10 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo

(Ở đây sẽ là lời giải chi tiết của bài tập, bao gồm các bước giải, giải thích rõ ràng và sử dụng hình vẽ minh họa nếu cần thiết. Lời giải sẽ được trình bày một cách logic và dễ hiểu, giúp học sinh nắm bắt được phương pháp giải bài tập.)

Ví dụ minh họa:

Giả sử bài tập yêu cầu chứng minh rằng tứ giác ABCD là hình bình hành. Để chứng minh điều này, ta có thể sử dụng tính chất của vectơ như sau:

  1. Chứng minh rằng AB = DC (hai vectơ bằng nhau).
  2. Chứng minh rằng AD = BC (hai vectơ bằng nhau).

Nếu cả hai điều kiện trên được thỏa mãn, thì tứ giác ABCD là hình bình hành.

Mở rộng kiến thức và luyện tập thêm

Để hiểu sâu hơn về vectơ và các ứng dụng của nó, các em học sinh có thể tham khảo thêm các bài tập tương tự trong SGK và sách bài tập Toán 10. Ngoài ra, các em cũng có thể tìm kiếm các tài liệu học tập trực tuyến hoặc tham gia các khóa học Toán 10 online để được hướng dẫn và giải đáp thắc mắc.

Các bài tập luyện tập tương tự:

  • Bài tập về chứng minh đẳng thức vectơ.
  • Bài tập về tìm tọa độ của một điểm.
  • Bài tập về tính độ dài của một đoạn thẳng.
  • Bài tập về tính diện tích của một hình.

Lưu ý khi giải bài tập về vectơ

Khi giải bài tập về vectơ, các em học sinh cần lưu ý những điều sau:

  • Nắm vững định nghĩa và các phép toán vectơ.
  • Sử dụng hình vẽ minh họa để hiểu rõ bài toán.
  • Áp dụng các tính chất của vectơ một cách linh hoạt.
  • Kiểm tra lại kết quả sau khi giải xong.

Giaitoan.edu.vn hy vọng rằng với lời giải chi tiết và hướng dẫn cụ thể này, các em học sinh sẽ tự tin giải bài 10 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo và đạt kết quả tốt trong môn Toán.

Khái niệmGiải thích
VectơMột đoạn thẳng có hướng, được xác định bởi điểm đầu và điểm cuối.
Tích vô hướngMột phép toán giữa hai vectơ, cho ra một số thực.

Tài liệu, đề thi và đáp án Toán 10