Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 38 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 2 trang 38 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 2 trang 38 SGK Toán 10 tập 1 – Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 2 trang 38 SGK Toán 10 tập 1 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.

Một nhà máy sản xuất hai loại thuốc trừ sâu nông nghiệp là A và B. Cứ sản xuất mỗi thùng loại A thì nhà máy thải ra 0,25 kg khí carbon dioxide (CO2) và 0,60 kg khí sulful dioxide (SO2), sản xuất mỗi thùng loại B thì thải ra 0,50 kg CO2 và 0,20 kg SO2. Biết rằng, quy định hạn chế sản lượng CO2 của nhà máy tối đa là 75 kg vàSO2 tối đa là 90 kg mỗi ngày.

Đề bài

Một nhà máy sản xuất hai loại thuốc trừ sâu nông nghiệp là A và B. Cứ sản xuất mỗi thùng loại A thì nhà máy thải ra 0,25 kg khí carbon dioxide (\(C{O_2}\)) và 0,60 kg khí sulful dioxide (\(S{O_2}\)), sản xuất mỗi thùng loại B thì thải ra 0,50 kg \(C{O_2}\) và 0,20 kg \(S{O_2}\). Biết rằng, quy định hạn chế sản lượng \(C{O_2}\) của nhà máy tối đa là 75 kg và \(S{O_2}\)tối đa là 90 kg mỗi ngày.

a) Tìm hệ bất phương trình mô tả số thùng của mỗi loại thuốc trừ sâu mà nhà máy có thể sản xuất mỗi ngày để đáp ứng các điều kiện hạn chế trên. Biểu diễn miền nghiệm của hệ bất phương trình đó trên mặt phẳng toạ độ.

b) Việc nhà máy sản xuất 100 thùng loại A và 80 thùng loại B mỗi ngày có phù hợp với quy định không?

c) Việc nhà máy sản xuất 60 thùng loại A và 160 thùng loại B mỗi ngày có phù hợp với quy định không?

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 38 SGK Toán 10 tập 1 – Chân trời sáng tạo 1

Bước 1: Gọi x, y lần lượt là số thùng thuốc trừ sâu loại A, loại B mà nhà máy sản xuất mỗi ngày.

Bước 2: Lập các điều kiện ràng buộc đối với x, y thành hệ bất phương trình.

Bước 3: Biểu diễn miền nghiệm của mỗi bất phương trình trên cùng hệ trục tọa độ Oxy.

Lời giải chi tiết

a) Gọi x là số thùng thuốc trừ sâu loại A, y là số thùng thuốc trừ sâu loại B mà nhà máy sản xuất mỗi ngày. Ta có các điều kiện ràng buộc đối với x, y như sau:

- Hiển nhiên \(x \ge 0,y \ge 0\)

- sản lượng \(C{O_2}\) tối đa là 75 kg nên \(0,25x + 0,5y \le 75\)

- sản lượng \(S{O_2}\) tối đa là 90 kg nên \(0,6x + 0,2y \le 90\)

Từ đó ta có hệ bất phương trình:

\(\left\{ \begin{array}{l}0,25x + 0,5y \le 75\\0,6x + 0,2y \le 90\\x \ge 0\\y \ge 0\end{array} \right.\)

Biểu diễn từng miền nghiệm của hệ bất phương trình trên hệ trục tọa độ Oxy, ta được như hình dưới.

Giải bài 2 trang 38 SGK Toán 10 tập 1 – Chân trời sáng tạo 2

Miền không gạch chéo (miền tứ giác OABC, bao gồm cả các cạnh) trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn nghiệm của hệ bất phương trình.

 b) Nhà máy sản xuất 100 thùng loại A và 80 thùng loại B mỗi ngày tức là \(x = 100,y = 80.\)

Vì \(\left\{ \begin{array}{l}0,25.100 + 0,5.80 = 65 \le 75\\0,6.100 + 0,2.80 = 76 \le 90\\100 \ge 0\\80 \ge 0\end{array} \right.\) nên cặp số (100; 80) là một nghiệm của hệ bất phương trình a).

Do đó việc nhà máy sản xuất 100 thùng loại A và 80 thùng loại B mỗi ngày là phù hợp với quy định.

c) Vì \(0,25.60 + 0,5.160 = 95 > 75\)nên việc sản xuất 60 thùng loại A và 160 thùng loại B mỗi ngày vượt quá sản lượng \(C{O_2}\) tối đa.

Vậy việc nhà máy sản xuất 60 thùng loại A và 160 thùng loại B mỗi ngày là không phù hợp với quy định.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 2 trang 38 SGK Toán 10 tập 1 – Chân trời sáng tạo đặc sắc thuộc chuyên mục toán 10 trên nền tảng toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 2 trang 38 SGK Toán 10 tập 1 – Chân trời sáng tạo: Tổng quan

Bài 2 trang 38 SGK Toán 10 tập 1 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về tập hợp, các phép toán trên tập hợp, và các tính chất cơ bản của tập hợp để giải quyết các bài toán cụ thể. Bài tập này thường yêu cầu học sinh xác định các tập hợp, tìm phần tử thuộc tập hợp, thực hiện các phép hợp, giao, hiệu, bù của các tập hợp, và chứng minh các đẳng thức liên quan đến tập hợp.

Nội dung bài tập

Bài 2 trang 38 thường bao gồm một số câu hỏi nhỏ, mỗi câu hỏi yêu cầu học sinh thực hiện một thao tác cụ thể trên các tập hợp cho trước. Ví dụ:

  • Cho hai tập hợp A và B, hãy tìm A ∪ B (hợp của A và B).
  • Cho hai tập hợp A và B, hãy tìm A ∩ B (giao của A và B).
  • Cho tập hợp A, hãy tìm Ac (bù của A trong tập số thực).
  • Chứng minh rằng A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

Phương pháp giải bài tập

Để giải bài 2 trang 38 SGK Toán 10 tập 1 – Chân trời sáng tạo một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Khái niệm tập hợp: Hiểu rõ định nghĩa về tập hợp, phần tử của tập hợp, và các ký hiệu liên quan.
  2. Các phép toán trên tập hợp: Nắm vững định nghĩa và tính chất của các phép hợp, giao, hiệu, bù của các tập hợp.
  3. Các tính chất của tập hợp: Hiểu rõ các tính chất giao hoán, kết hợp, phân phối của các phép toán trên tập hợp.
  4. Sử dụng sơ đồ Venn: Sơ đồ Venn là một công cụ hữu ích để minh họa các tập hợp và các phép toán trên tập hợp.

Lời giải chi tiết bài 2 trang 38

Câu a: (Ví dụ về một câu hỏi cụ thể và lời giải chi tiết). Giả sử đề bài yêu cầu tìm A ∪ B, với A = {1, 2, 3} và B = {3, 4, 5}. Khi đó, A ∪ B = {1, 2, 3, 4, 5}.

Câu b: (Ví dụ về một câu hỏi cụ thể và lời giải chi tiết). Giả sử đề bài yêu cầu tìm A ∩ B, với A = {1, 2, 3} và B = {3, 4, 5}. Khi đó, A ∩ B = {3}.

Câu c: (Ví dụ về một câu hỏi cụ thể và lời giải chi tiết). Giả sử đề bài yêu cầu tìm Ac, với A = {1, 2, 3} và tập số thực là U. Khi đó, Ac = U \ {1, 2, 3}.

Bài tập tương tự

Để củng cố kiến thức và kỹ năng giải bài tập về tập hợp, bạn có thể tham khảo các bài tập tương tự sau:

  • Tìm A ∪ B, A ∩ B, A \ B, B \ A, Ac, Bc với A = {1, 2, 3, 4} và B = {3, 4, 5, 6}.
  • Chứng minh rằng A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
  • Cho A = {x | x là số chẵn nhỏ hơn 10} và B = {x | x là số lẻ nhỏ hơn 10}. Hãy tìm A ∪ B và A ∩ B.

Lưu ý khi giải bài tập

Khi giải bài tập về tập hợp, bạn cần chú ý các điểm sau:

  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài toán.
  • Sử dụng đúng các ký hiệu và định nghĩa về tập hợp.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Sử dụng sơ đồ Venn để minh họa các tập hợp và các phép toán trên tập hợp (nếu cần thiết).

Kết luận

Bài 2 trang 38 SGK Toán 10 tập 1 – Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về tập hợp và các phép toán trên tập hợp. Hy vọng rằng với hướng dẫn chi tiết và các bài tập tương tự, bạn sẽ tự tin hơn trong việc giải quyết các bài toán liên quan đến tập hợp.

Tài liệu, đề thi và đáp án Toán 10