Logo Header
  1. Môn Toán
  2. Giải bài 5 trang 127 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 5 trang 127 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 5 trang 127 SGK Toán 10 tập 1 – Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 5 trang 127 SGK Toán 10 tập 1 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.

Bạn Châu cân lần lượt 50 quả vải thiều Thanh Hà được lựa chọn ngẫu nhiên từ vườn nhà mình và được kết quả như sau:

Đề bài

Bạn Châu cân lần lượt 50 quả vải thiều Thanh Hà được lựa chọn ngẫu nhiên từ vườn nhà mình và được kết quả như sau:

Cân nặng

(đơn vị: gam)

Số quả

8

1

19

10

20

19

21

17

22

3

a) Hãy tìm số trung bình, trung vị, mốt của mẫu số liệu trên

b) Hãy tìm độ lệch chuẩn, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ của mẫu số liệu trên.

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 127 SGK Toán 10 tập 1 – Chân trời sáng tạo 1

Cho bảng số liệu:

Giá trị

\({x_1}\)

\({x_2}\)

\({x_m}\)

Tần số

\({f_1}\)

\({f_2}\)

\({f_m}\)

(Giá trị tương ứng với cân nặng, số quả tương ứng với tần số)

a)

+) Số trung bình: \(\overline x = \frac{{{x_1}.{f_1} + {x_2}.{f_2} + ... + {x_m}.{f_m}}}{{{f_1} + {f_2} + ... + {f_m}}}\)

+) Sắp xếp các giá trị theo thứ tự không giảm: \({X_1},..{X_1},\;{X_2},\;...,{X_2},\;...,{X_m},...,{X_m}\)

Trung vị \({M_e} = \left\{ \begin{array}{l}{X_{k + 1}}\quad \quad \quad \quad \quad (n = 2k + 1)\\\frac{1}{2}({X_k} + {X_{k + 1}})\quad \;\,(n = 2k)\end{array} \right.\)(\(n = {f_1} + {f_2} + ... + {f_m}\))

+) Mốt \({M_o}\) là giá trị có tần số lớn nhất. (Một mẫu có thể có nhiều mốt)

b)

+) Tình độ lệch chuẩn:

Tính phương sai \({S^2} = \frac{1}{n}\left( {{f_1}.{x_1}^2 + {f_2}{x_2}^2 + ... + {f_m}{x_m}^2} \right) - {\overline x ^2}\)

=> Độ lệch chuẩn \(S = \sqrt {{S^2}} \)

+) Khoảng biến thiên = Giá trị lớn nhất – giá trị nhỏ nhất

+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

\({Q_2} = {M_e}\)

\({Q_1}\) là trung vị của nửa số liệu đã sắp xếp bên trái \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)

\({Q_3}\) là trung vị của nửa số liệu đã sắp xếp bên phải \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)

+) x là giá trị ngoại lệ nếu \(x > {Q_3} + {\Delta _Q}\) hoặc \(x < {Q_1} - {\Delta _Q}\)(trong đó \({\Delta _Q} = {Q_3} - {Q_1}\))

Lời giải chi tiết

a)

Số trung bình \(\overline x = \frac{{8.1 + 19.10 + 20.19 + 21.17 + 22.3}}{{1 + 10 + 19 + 17 + 3}} = 20,02\)

+) Sắp xếp các giá trị theo thứ tự không giảm: \(8,\underbrace {19,...,19}_{10},\underbrace {20,...,20}_{19},\underbrace {21,...,21}_{17},22,22,22\)

Trung vị \({M_e} = \frac{1}{2}(20 + 20) = 20\)

+) Mốt \({M_o} = 20\)

b)

+) Tình độ lệch chuẩn:

Phương sai \({S^2} = \frac{1}{{50}}\left( {{8^2} + {{10.19}^2} + {{19.20}^2} + {{17.21}^2} + {{3.22}^2}} \right) - 20,{02^2} \approx 3,66\)

=> Độ lệch chuẩn \(S = \sqrt {{S^2}} \approx 1,91\)

+) Khoảng biến thiên \(R = 22 - 8 = 14\)

+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

\({Q_2} = {M_e} = 20\)

\({Q_1}\) là trung vị của mẫu: \(8,\underbrace {19,...,19}_{10},\underbrace {20,...,20}_{14}\). Do đó \({Q_1} = 20\)

\({Q_3}\) là trung vị của mẫu: \(\underbrace {20,...,20}_5,\underbrace {21,...,21}_{17},22,22,22\). Do đó \({Q_3} = 21\)

+) x là giá trị ngoại lệ nếu \(x > 21 + 1,5(21 - 20) = 22,5\) hoặc \(x < 20 - 1,5.(21 - 10) = 18,5\).

Vậy có một giá trị ngoại lệ là 8.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 5 trang 127 SGK Toán 10 tập 1 – Chân trời sáng tạo đặc sắc thuộc chuyên mục toán lớp 10 trên nền tảng soạn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 5 trang 127 SGK Toán 10 tập 1 – Chân trời sáng tạo: Tổng quan

Bài 5 trang 127 SGK Toán 10 tập 1 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm về vectơ, phép cộng, trừ vectơ, tích của một số với vectơ, và đặc biệt là ứng dụng của vectơ trong việc chứng minh các tính chất hình học.

Nội dung bài tập

Bài 5 trang 127 SGK Toán 10 tập 1 – Chân trời sáng tạo thường bao gồm các dạng bài tập sau:

  • Xác định vectơ: Yêu cầu học sinh xác định các vectơ trong một hình cụ thể, ví dụ như vectơ biểu diễn cạnh của một hình bình hành, vectơ trung tuyến của một tam giác.
  • Thực hiện các phép toán vectơ: Thực hiện các phép cộng, trừ vectơ, tích của một số với vectơ để tìm vectơ mới.
  • Chứng minh đẳng thức vectơ: Sử dụng các quy tắc phép toán vectơ để chứng minh các đẳng thức vectơ cho trước.
  • Ứng dụng vectơ vào hình học: Sử dụng vectơ để chứng minh các tính chất của hình học, ví dụ như chứng minh hai đường thẳng song song, chứng minh một điểm nằm trên một đường thẳng.

Lời giải chi tiết bài 5 trang 127 SGK Toán 10 tập 1 – Chân trời sáng tạo

Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài tập. Lưu ý rằng, trong quá trình giải bài tập, cần phải vẽ hình minh họa để dễ dàng hình dung và kiểm tra lại kết quả.

Ví dụ minh họa (Giả định một bài tập cụ thể trong bài 5):

Bài tập: Cho hình bình hành ABCD. Gọi M là trung điểm của cạnh BC. Chứng minh rằng vectơ AM = (1/2) vectơ AC + (1/2) vectơ AB.

Lời giải:

  1. Phân tích: Ta cần chứng minh đẳng thức vectơ AM = (1/2) vectơ AC + (1/2) vectơ AB. Để làm điều này, ta sẽ sử dụng quy tắc cộng vectơ và tính chất trung điểm của đoạn thẳng.
  2. Chứng minh:

    Vì M là trung điểm của BC, ta có vectơ BM = (1/2) vectơ BC.

    Mà vectơ BC = vectơ AD (do ABCD là hình bình hành).

    Do đó, vectơ BM = (1/2) vectơ AD.

    Ta có vectơ AM = vectơ AB + vectơ BM = vectơ AB + (1/2) vectơ AD.

    Vì vectơ AD = vectơ BC và vectơ AC = vectơ AB + vectơ BC, ta có vectơ BC = vectơ AC - vectơ AB.

    Thay vectơ BC = vectơ AC - vectơ AB vào vectơ AM = vectơ AB + (1/2) vectơ AD, ta được:

    vectơ AM = vectơ AB + (1/2) (vectơ AC - vectơ AB) = vectơ AB + (1/2) vectơ AC - (1/2) vectơ AB = (1/2) vectơ AC + (1/2) vectơ AB.

Mẹo giải bài tập vectơ

Để giải các bài tập về vectơ một cách hiệu quả, bạn nên lưu ý những mẹo sau:

  • Vẽ hình minh họa: Vẽ hình minh họa giúp bạn dễ dàng hình dung bài toán và kiểm tra lại kết quả.
  • Sử dụng quy tắc cộng vectơ: Quy tắc cộng vectơ là công cụ quan trọng để giải quyết nhiều bài tập về vectơ.
  • Áp dụng các tính chất của vectơ: Nắm vững các tính chất của vectơ, ví dụ như tính chất giao hoán, kết hợp, phân phối của phép cộng và phép nhân vectơ.
  • Biến đổi vectơ: Sử dụng các phép biến đổi vectơ để đưa bài toán về dạng đơn giản hơn.

Bài tập luyện tập

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về vectơ, bạn có thể tham khảo các bài tập sau:

  • Bài 1: Cho tam giác ABC. Gọi G là trọng tâm của tam giác. Chứng minh rằng vectơ GA + vectơ GB + vectơ GC = vectơ 0.
  • Bài 2: Cho hình vuông ABCD. Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh rằng vectơ OA + vectơ OB + vectơ OC + vectơ OD = vectơ 0.

Kết luận

Bài 5 trang 127 SGK Toán 10 tập 1 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu rõ hơn về ứng dụng của vectơ trong hình học. Hy vọng rằng, với lời giải chi tiết và những mẹo giải bài tập mà chúng tôi đã trình bày, các bạn học sinh sẽ tự tin hơn trong quá trình học tập môn Toán.

Tài liệu, đề thi và đáp án Toán 10