Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 78 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 2 trang 78 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 2 trang 78 SGK Toán 10 tập 1 – Chân trời sáng tạo

Chào mừng các em học sinh đến với lời giải chi tiết bài 2 trang 78 SGK Toán 10 tập 1 – Chân trời sáng tạo. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu, nhanh chóng và chính xác.

Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất trong môn Toán.

Cho tam giác ABC. Biết a = 24,b = 13,c = 15. Tính các góc A, B, C

Đề bài

Cho tam giác ABC. Biết \(a = 24,b = 13,c = 15.\) Tính các góc \(\widehat A,\widehat B,\widehat C.\)

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 78 SGK Toán 10 tập 1 – Chân trời sáng tạo 1

Áp dụng hệ quả của định lí cosin: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}};\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\)

Từ đó suy ra các góc \(\widehat A,\widehat B,\widehat C.\)

Lời giải chi tiết

Áp dụng hệ quả của định lí cosin, ta có:

 \(\begin{array}{l}\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\\ \Rightarrow \cos A = \frac{{{{13}^2} + {{15}^2} - {{24}^2}}}{{2.13.15}} = - \frac{7}{{15}};\cos B = \frac{{{{24}^2} + {{15}^2} - {{13}^2}}}{{2.24.15}} = \frac{{79}}{{90}}\\ \Rightarrow \widehat A \approx 117,{8^ \circ },\widehat B \approx 28,{6^o}\\ \Rightarrow \widehat C \approx 33,{6^o}\end{array}\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 2 trang 78 SGK Toán 10 tập 1 – Chân trời sáng tạo đặc sắc thuộc chuyên mục bài tập toán lớp 10 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 2 trang 78 SGK Toán 10 tập 1 – Chân trời sáng tạo: Tổng quan

Bài 2 trang 78 SGK Toán 10 tập 1 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của chúng.

Nội dung bài tập

Bài 2 trang 78 SGK Toán 10 tập 1 – Chân trời sáng tạo thường bao gồm các dạng bài tập sau:

  • Xác định vectơ: Cho hình vẽ, yêu cầu xác định các vectơ có trong hình.
  • Thực hiện phép toán vectơ: Tính tổng, hiệu của các vectơ, tính tích của một số với vectơ.
  • Chứng minh đẳng thức vectơ: Sử dụng các tính chất của phép cộng, phép trừ vectơ, tích của một số với vectơ để chứng minh đẳng thức vectơ.
  • Ứng dụng vectơ vào hình học: Giải các bài toán liên quan đến hình học phẳng bằng phương pháp vectơ.

Lời giải chi tiết bài 2 trang 78 SGK Toán 10 tập 1 – Chân trời sáng tạo

Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập.

Phần 1: Xác định vectơ

Trong phần này, các em cần quan sát kỹ hình vẽ và xác định các vectơ có trong hình. Ví dụ, nếu cho tam giác ABC, các em có thể xác định các vectơ như AB, AC, BC.

Phần 2: Thực hiện phép toán vectơ

Để thực hiện phép toán vectơ, các em cần nắm vững các quy tắc sau:

  • Phép cộng vectơ:AB + BC = AC
  • Phép trừ vectơ:AC - AB = BC
  • Tích của một số với vectơ:k * AB là một vectơ cùng hướng với AB nếu k > 0 và ngược hướng với AB nếu k < 0. Độ dài của k * AB|k| * |AB|.

Phần 3: Chứng minh đẳng thức vectơ

Để chứng minh đẳng thức vectơ, các em có thể sử dụng các phương pháp sau:

  • Sử dụng quy tắc hình bình hành: Nếu AB + AC = AD thì ABCD là hình bình hành.
  • Sử dụng quy tắc tam giác: Nếu AB + BC = AC thì B nằm trên đoạn thẳng AC.
  • Biến đổi đại số: Sử dụng các tính chất của phép cộng, phép trừ vectơ, tích của một số với vectơ để biến đổi đẳng thức vectơ về dạng đơn giản hơn.

Phần 4: Ứng dụng vectơ vào hình học

Trong phần này, các em cần sử dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Ví dụ, để chứng minh hai đường thẳng song song, các em có thể chứng minh hai vectơ chỉ phương của hai đường thẳng cùng phương.

Mẹo giải bài tập vectơ

Để giải bài tập vectơ một cách hiệu quả, các em có thể tham khảo một số mẹo sau:

  • Vẽ hình: Vẽ hình giúp các em hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Chọn hệ tọa độ: Chọn hệ tọa độ thích hợp giúp các em biểu diễn các vectơ bằng tọa độ và thực hiện các phép toán vectơ một cách dễ dàng.
  • Sử dụng các tính chất của vectơ: Nắm vững các tính chất của vectơ giúp các em giải quyết bài tập một cách nhanh chóng và chính xác.

Bài tập tương tự

Để củng cố kiến thức về vectơ, các em có thể làm thêm một số bài tập tương tự sau:

  • Bài 3 trang 78 SGK Toán 10 tập 1 – Chân trời sáng tạo
  • Bài 4 trang 78 SGK Toán 10 tập 1 – Chân trời sáng tạo

Kết luận

Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập vectơ trên, các em sẽ hiểu rõ hơn về bài 2 trang 78 SGK Toán 10 tập 1 – Chân trời sáng tạo và có thể tự tin giải quyết các bài tập tương tự. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 10