Chào mừng các em học sinh đến với lời giải chi tiết bài 3 trang 14 SGK Toán 10 tập 1 – Chân trời sáng tạo. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả.
Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.
Xét hai mệnh đề: P: “Tứ giác ABCD là hình bình hành”. Q: “Tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm của mỗi đường”.
Đề bài
Xét hai mệnh đề:
P: “Tứ giác ABCD là hình bình hành”.
Q: “Tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm của mỗi đường”.
a) Phát biểu mệnh đề \(P \Rightarrow Q\) và xét tính đúng sai của nó.
b) Phát biểu mệnh đề đảo của mệnh đề \(P \Rightarrow Q\).
Phương pháp giải - Xem chi tiết
a) Mệnh đề \(P \Rightarrow Q\) phát biểu là “Nếu P thì Q” hoặc “P kéo theo Q”, “Từ P suy ra Q”.
b) Mệnh đề đảo của mệnh đề \(P \Rightarrow Q\) là mệnh đề \(Q \Rightarrow P\).
Lời giải chi tiết
a) Mệnh đề \(P \Rightarrow Q\): “Nếu tứ giác ABCD là hình bình hành thì nó có hai đường chéo cắt nhau tại trung điểm của mỗi đường”.
Mệnh đề này đúng vì “hai đường chéo cắt nhau tại trung điểm của mỗi đường” là tính chất của hình hình hành.
b) Mệnh đề đảo của mệnh đề \(P \Rightarrow Q\) là mệnh đề \(Q \Rightarrow P\), được phát biểu là: “Nếu tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm của mỗi đường thì nó là hình bình hành”.
Bài 3 trang 14 SGK Toán 10 tập 1 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về tập hợp, các phép toán trên tập hợp, và các tính chất cơ bản của tập hợp để giải quyết các bài toán cụ thể. Bài tập này thường yêu cầu học sinh xác định các tập hợp, tìm phần tử thuộc tập hợp, thực hiện các phép hợp, giao, hiệu, bù của các tập hợp, và chứng minh các đẳng thức liên quan đến tập hợp.
Bài 3 thường bao gồm một số câu hỏi nhỏ, mỗi câu hỏi yêu cầu học sinh thực hiện một thao tác cụ thể với tập hợp. Ví dụ:
Để giải quyết hiệu quả các bài tập về tập hợp, học sinh cần nắm vững các khái niệm cơ bản và các tính chất của tập hợp. Dưới đây là một số phương pháp giải bài tập thường được sử dụng:
Ví dụ: Cho A = {1, 2, 3, 4} và B = {3, 4, 5, 6}. Tìm A ∪ B và A ∩ B.
Giải:
Để củng cố kiến thức và kỹ năng giải bài tập về tập hợp, học sinh nên luyện tập thêm với các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Ngoài ra, học sinh có thể tìm kiếm các bài giảng trực tuyến hoặc tham gia các khóa học toán online để được hướng dẫn chi tiết và giải đáp thắc mắc.
Trong quá trình học tập, học sinh nên chủ động đặt câu hỏi cho giáo viên hoặc bạn bè nếu gặp khó khăn. Việc hiểu rõ các khái niệm và phương pháp giải bài tập là rất quan trọng để đạt kết quả tốt trong môn Toán. Chúc các em học tập tốt!
Phép toán | Công thức |
---|---|
Hợp (∪) | A ∪ B = {x | x ∈ A hoặc x ∈ B} |
Giao (∩) | A ∩ B = {x | x ∈ A và x ∈ B} |
Hiệu (\) | A \ B = {x | x ∈ A và x ∉ B} |
Bù (CAB) | CAB = {x ∈ A | x ∉ B} |