Chào mừng các em học sinh đến với lời giải chi tiết bài tập mục 1 trang 77, 78 SGK Toán 10 tập 2 chương trình Chân trời sáng tạo. Tại giaitoan.edu.vn, chúng tôi cung cấp đáp án chính xác, dễ hiểu cùng với phương pháp giải bài tập một cách khoa học, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Bài tập trong mục này tập trung vào các kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học.
Ba bạn An, Bình, Cường đang chơi cùng với nhau. An gieo một con xúc xắc 6 mặt cân đối (viết tắt là xúc xắc) hai lần. Tìm không gian mẫu của phép thử thực hiện ở hoạt động khám phá 1 Lấy ngẫu nhiên một quả bóng từ hộp ở ví dụ 2, xem số, sau đó trả lại hộp, trộn đều rồi lại lấy ngẫu nhiên một quả bóng từ hộp đó.
Ba bạn An, Bình, Cường đang chơi cùng với nhau. An gieo một con xúc xắc 6 mặt cân đối (viết tắt là xúc xắc) hai lần. Nếu kết quả hai lần gieo ra hai mặt có số chấm khác nhau thì Bình thắng. Ngược lại, nếu kết quả hai lần gieo ra hai mặt khác nhau thì Cường thắng
a) Trước khi An gieo con xúc xắc, có thể biết bạn nào sẽ chiến thắng không?
b) Liệt kê tất cả các kết quả có thể xảy ra đối với số chấm xuất hiện trong hai lần gieo.
Lời giải chi tiết:
a) Trước khi An gieo con xúc xắc, ta không thể biết bạn nào sẽ chiến thắng. Vì kết quả xúc xắc là ngẫu nhiên, không thể đoán trước
b) Các kết quả có thể xảy ra trong hai lần gieo là (lần lượt số chấm theo thứ tự gieo xúc xắc): 11; 12; 13; 14; 15; 16; 21; 22; 23; 24; 25; 26; 31; 32; 33; 34; 35; 36; 41; 42; 43; 44; 45; 46; 51; 52; 53; 54; 55; 56; 61; 62; 63; 64; 65; 66
Tìm không gian mẫu của phép thử thực hiện ở hoạt động khám phá 1
Phương pháp giải:
Không gian mẫu là tập hợp tất cả các kết quả có thể xảy ra
Lời giải chi tiết:
Từ câu b) của hoạt động khám phá 1, ta có không gian mẫu là
\( \begin{array}{l}\Omega =\{\left( {1;1} \right);\left( {1;2} \right);\left( {1;3} \right);\left( {1;4} \right);\left( {1;5} \right);\left( {1;6} \right);\left( {2;1} \right);\left( {2;2} \right);\left( {2;3} \right);\left( {2;4} \right);\left( {2;5} \right);\left( {2;6} \right);\left( {3;1} \right);\left( {3;2} \right);\\\left( {3;3} \right);\left( {3;4} \right);\left( {3;5} \right);\left( {3;6} \right);\left( {4;1} \right);\left( {4;2} \right);\left( {4;3} \right);\left( {4;4} \right);\left( {4;5} \right);\left( {4;6} \right);\\\left( {5;1} \right);\left( {5;2} \right);\left( {5;3} \right);\left( {5;4} \right);\left( {5;5} \right);\left( {5;6} \right);\left( {6;1} \right);\left( {6;2} \right);\left( {6;3} \right);\left( {6;4} \right);\left( {6;5} \right);\left( {6;6} \right)\}\end{array} \)
Lấy ngẫu nhiên một quả bóng từ hộp ở ví dụ 2, xem số, sau đó trả lại hộp, trộn đều rồi lại lấy ngẫu nhiên một quả bóng từ hộp đó. Hãy xác định không gian mẫu của phép thử hai lần lấy bóng này.
Lời giải chi tiết:
Do lần đầu tiên lấy bóng sau đó trả lại hộp nên lần hai có thể lấy 1 trong 4 quả bóng và hai lần lấy lần lượt nên ta cần phải tính đến thứ tự lấy bóng. Nếu lần đầu lấy được bóng 1 và lần hai lấy được bóng 3 thì ta sẽ kí hiệu kết quả của phép thử là cặp (1; 3). Khi đó không gian mẫu của phép thử là:
\(\Omega = \left\{ \begin{array}{l}(1;1);(1;2);(1;3);(1;4);(2;1);(2;2);(2;3);(2;4);\\(3;1);(3;2);(3;3);(3;4);(4;1);(4;2);(4;3);(4;4)\end{array} \right\}\)
Ba bạn An, Bình, Cường đang chơi cùng với nhau. An gieo một con xúc xắc 6 mặt cân đối (viết tắt là xúc xắc) hai lần. Nếu kết quả hai lần gieo ra hai mặt có số chấm khác nhau thì Bình thắng. Ngược lại, nếu kết quả hai lần gieo ra hai mặt khác nhau thì Cường thắng
a) Trước khi An gieo con xúc xắc, có thể biết bạn nào sẽ chiến thắng không?
b) Liệt kê tất cả các kết quả có thể xảy ra đối với số chấm xuất hiện trong hai lần gieo.
Lời giải chi tiết:
a) Trước khi An gieo con xúc xắc, ta không thể biết bạn nào sẽ chiến thắng. Vì kết quả xúc xắc là ngẫu nhiên, không thể đoán trước
b) Các kết quả có thể xảy ra trong hai lần gieo là (lần lượt số chấm theo thứ tự gieo xúc xắc): 11; 12; 13; 14; 15; 16; 21; 22; 23; 24; 25; 26; 31; 32; 33; 34; 35; 36; 41; 42; 43; 44; 45; 46; 51; 52; 53; 54; 55; 56; 61; 62; 63; 64; 65; 66
Tìm không gian mẫu của phép thử thực hiện ở hoạt động khám phá 1
Phương pháp giải:
Không gian mẫu là tập hợp tất cả các kết quả có thể xảy ra
Lời giải chi tiết:
Từ câu b) của hoạt động khám phá 1, ta có không gian mẫu là
\( \begin{array}{l}\Omega =\{\left( {1;1} \right);\left( {1;2} \right);\left( {1;3} \right);\left( {1;4} \right);\left( {1;5} \right);\left( {1;6} \right);\left( {2;1} \right);\left( {2;2} \right);\left( {2;3} \right);\left( {2;4} \right);\left( {2;5} \right);\left( {2;6} \right);\left( {3;1} \right);\left( {3;2} \right);\\\left( {3;3} \right);\left( {3;4} \right);\left( {3;5} \right);\left( {3;6} \right);\left( {4;1} \right);\left( {4;2} \right);\left( {4;3} \right);\left( {4;4} \right);\left( {4;5} \right);\left( {4;6} \right);\\\left( {5;1} \right);\left( {5;2} \right);\left( {5;3} \right);\left( {5;4} \right);\left( {5;5} \right);\left( {5;6} \right);\left( {6;1} \right);\left( {6;2} \right);\left( {6;3} \right);\left( {6;4} \right);\left( {6;5} \right);\left( {6;6} \right)\}\end{array} \)
Lấy ngẫu nhiên một quả bóng từ hộp ở ví dụ 2, xem số, sau đó trả lại hộp, trộn đều rồi lại lấy ngẫu nhiên một quả bóng từ hộp đó. Hãy xác định không gian mẫu của phép thử hai lần lấy bóng này.
Lời giải chi tiết:
Do lần đầu tiên lấy bóng sau đó trả lại hộp nên lần hai có thể lấy 1 trong 4 quả bóng và hai lần lấy lần lượt nên ta cần phải tính đến thứ tự lấy bóng. Nếu lần đầu lấy được bóng 1 và lần hai lấy được bóng 3 thì ta sẽ kí hiệu kết quả của phép thử là cặp (1; 3). Khi đó không gian mẫu của phép thử là:
\(\Omega = \left\{ \begin{array}{l}(1;1);(1;2);(1;3);(1;4);(2;1);(2;2);(2;3);(2;4);\\(3;1);(3;2);(3;3);(3;4);(4;1);(4;2);(4;3);(4;4)\end{array} \right\}\)
Mục 1 trang 77, 78 SGK Toán 10 tập 2 Chân trời sáng tạo là một phần quan trọng trong chương trình học, tập trung vào việc củng cố kiến thức về vectơ và ứng dụng của chúng. Để giải quyết các bài tập trong mục này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản, các định lý và các phép toán liên quan đến vectơ.
Trước khi đi vào giải bài tập, chúng ta cần ôn lại một số khái niệm cơ bản về vectơ:
Các phép toán vectơ thường gặp bao gồm:
Dưới đây là hướng dẫn giải chi tiết một số bài tập tiêu biểu trong mục 1 trang 77, 78 SGK Toán 10 tập 2 Chân trời sáng tạo:
Hướng dẫn: Sử dụng quy tắc hình bình hành hoặc quy tắc tam giác để tìm vectơ c.
Hướng dẫn: Sử dụng công thức tính tích vô hướng: a.b = |a||b|cos(θ), trong đó θ là góc giữa hai vectơ a và b.
Để nắm vững kiến thức về vectơ và ứng dụng của chúng, học sinh nên luyện tập thêm các bài tập khác trong SGK và các tài liệu tham khảo. Đồng thời, cần thường xuyên ôn lại các khái niệm cơ bản và các định lý liên quan.
Giải mục 1 trang 77, 78 SGK Toán 10 tập 2 Chân trời sáng tạo đòi hỏi học sinh phải nắm vững các khái niệm cơ bản về vectơ, các phép toán vectơ và ứng dụng của chúng. Bằng cách luyện tập thường xuyên và áp dụng các phương pháp giải bài tập hiệu quả, các em sẽ tự tin hơn trong quá trình học tập môn Toán.
Khái niệm | Mô tả |
---|---|
Vectơ | Đoạn thẳng có hướng |
Tích vô hướng | Phép toán giữa hai vectơ cho ra một số thực |