Logo Header
  1. Môn Toán
  2. Giải bài 12 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 12 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 12 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo

Bài 12 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 12 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Một chiếc thuyền cố gắng đi thẳng qua một con sông với tốc độ 0,75 m/s. Tuy nhiên dòng chảy của nước trên con sông đó chạy với tốc độ 1,20 m/s về hướng bên phải.

Đề bài

Một chiếc thuyền cố gắng đi thẳng qua một con sông với tốc độ 0,75 m/s. Tuy nhiên dòng chảy của nước trên con sông đó chạy với tốc độ 1,20 m/s về hướng bên phải. Gọi \(\overrightarrow {{v_1}} ,\overrightarrow {{v_2}} ,\overrightarrow v \) lần lượt là vận tốc của thuyền so với dòng nước, vận tốc của dòng nước so với bờ và vận tốc của thuyền so với bờ.

a) Tính độ dài của các vectơ \(\overrightarrow {{v_1}} ,\overrightarrow {{v_2}} ,\overrightarrow v \)

b) Tốc độ dịch chuyển của thuyền so với bờ là bao nhiêu?

c) Hướng di chuyển của thuyền lệch một góc bao nhiêu so với bờ?

Giải bài 12 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo 1

Phương pháp giải - Xem chi tiếtGiải bài 12 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo 2

a) Sử dụng tính chất trong tam giác vuông \({c^2} = {a^2} + {b^2}\) (với c là cạnh huyền của tam giác vuông và a, b là cạnh góc vuông)

b) Chỉ ra kết quả độ dài vectơ \(\overrightarrow v \) đã tính được ở câu a)

c) Sử dụng tính chất trong tam giác vuông \(\sin B = \frac{a}{c}\) (với c là cạnh huyền của tam giác vuông và a, b là cạnh góc vuông)

Lời giải chi tiết

a) Ta có:

\(\left| {\overrightarrow {{v_1}} } \right| = 0,75;\left| {\overrightarrow {{v_2}} } \right| = 1,20\)

Dựa vào hình vẽ ta thấy \(\overrightarrow v = \overrightarrow {{v_1}} + \overrightarrow {{v_2}} \) và \(\overrightarrow {{v_1}} \bot \overrightarrow {{v_2}} \)

Áp dụng tính chất trong tam giác vuông ta có: \({\left| {\overrightarrow v } \right|^2} = {\left| {\overrightarrow {{v_1}} } \right|^2} + {\left| {\overrightarrow {{v_2}} } \right|^2} \Rightarrow \left| {\overrightarrow v } \right| = \sqrt {{{\left| {\overrightarrow {{v_1}} } \right|}^2} + {{\left| {\overrightarrow {{v_2}} } \right|}^2}} = \sqrt {0,{{75}^2} + 1,{2^2}} = \frac{{3\sqrt {89} }}{{20}}\)

b) Tốc độ dịch chuyển của thuyền so với bờ là \(\frac{{3\sqrt {89} }}{{20}}\) m/s

c) Nước có hướng dichuyển song song với bờ nên hướng di chuyển của thuyền

so với bờ tương đương với hướng di chuyển của thuyền so với nước

Suy ra góc lệch giữa hướng di chuyển của thuyền và bờ là \(\left( {\overrightarrow v ,\overrightarrow {{v_2}} } \right)\)

Ta có: \(\sin \left( {\overrightarrow v ,\overrightarrow {{v_2}} } \right) = \frac{{\left| {\overrightarrow {{v_1}} } \right|}}{{\left| {\overrightarrow v } \right|}} = \frac{{0,75}}{{\frac{{3\sqrt {89} }}{{20}}}} = \frac{{5\sqrt {89} }}{{89}} \Rightarrow \left( {\overrightarrow v ,\overrightarrow {{v_2}} } \right) \simeq 32^\circ \)

Vậy hướng di chuyển của thuyền lệch một góc \(32^\circ \) so với bờ

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 12 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo đặc sắc thuộc chuyên mục giải bài tập toán 10 trên nền tảng toán math. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 12 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo: Hướng dẫn chi tiết và đáp án

Bài 12 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo thuộc chương trình học về vectơ trong không gian. Để giải bài tập này, học sinh cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:

  • Vectơ: Định nghĩa, các yếu tố của vectơ, sự bằng nhau của hai vectơ.
  • Các phép toán vectơ: Phép cộng, phép trừ, phép nhân với một số thực.
  • Ứng dụng của vectơ: Biểu diễn các điểm, đường thẳng, đoạn thẳng bằng vectơ.

Dưới đây là đề bài và lời giải chi tiết bài 12 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo:

Đề bài: (Nội dung đề bài sẽ được điền vào đây, ví dụ: Cho hình bình hành ABCD. Gọi M là trung điểm của BC. Chứng minh rằng AM và BD cắt nhau tại một điểm.)

Lời giải:

  1. Phân tích bài toán: Để chứng minh AM và BD cắt nhau tại một điểm, ta cần tìm giao điểm của hai đường thẳng này.
  2. Sử dụng phương pháp tọa độ: Chọn hệ tọa độ thích hợp và biểu diễn các điểm A, B, C, D, M bằng tọa độ.
  3. Tìm phương trình đường thẳng: Viết phương trình đường thẳng AM và BD.
  4. Giải hệ phương trình: Giải hệ phương trình hai đường thẳng để tìm tọa độ giao điểm.
  5. Kết luận: Kết luận về vị trí tương đối của AM và BD.

Giải thích chi tiết từng bước:

(Giải thích chi tiết từng bước giải bài toán, bao gồm các phép tính, các bước biến đổi và các kết luận. Sử dụng các ví dụ minh họa để giúp học sinh hiểu rõ hơn.)

Lưu ý:

  • Khi giải bài tập về vectơ, cần chú ý đến việc chọn hệ tọa độ phù hợp để đơn giản hóa bài toán.
  • Cần nắm vững các công thức và tính chất của các phép toán vectơ.
  • Cần kiểm tra lại kết quả sau khi giải bài tập.

Bài tập tương tự:

(Liệt kê một số bài tập tương tự để học sinh luyện tập và củng cố kiến thức.)

Tổng kết:

Bài 12 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu sâu hơn về vectơ và ứng dụng của vectơ trong hình học. Hy vọng với lời giải chi tiết và dễ hiểu trên đây, các em học sinh sẽ tự tin giải quyết bài tập này và các bài tập tương tự.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!

Khái niệmGiải thích
VectơMột đoạn thẳng có hướng.
Phép cộng vectơQuy tắc hình bình hành.

Tài liệu, đề thi và đáp án Toán 10