Chào mừng các em học sinh đến với lời giải chi tiết bài 5 trang 125 SGK Toán 10 tập 1 – Chân trời sáng tạo. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả.
Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.
Sản lượng lúa các năm từ 2014 đến 2018 của hai tỉnh Thái Bình và Hậu Giang được cho ở bảng sau (đơn vị nghìn tấn):
Đề bài
Sản lượng lúa các năm từ 2014 đến 2018 của hai tỉnh Thái Bình và Hậu Giang được cho ở bảng sau (đơn vị nghìn tấn):
Năm Tỉnh | 2014 | 2015 | 2016 | 2017 | 2018 |
Thái Bình | 1061,9 | 1061,9 | 1053,6 | 942,6 | 1030,4 |
Hậu Giang | 1204,6 | 1293,1 | 1231,0 | 1261,0 | 1246,1 |
a) Hãy tính độ lệch chuẩn và khoảng biến thiên của sản lượng lúa từng tỉnh.
b) Tỉnh nào có sản lượng lúa ổn định hơn? Tại sao?
Phương pháp giải - Xem chi tiết
a)
+) Tình độ lệch chuẩn:
Bước 1: Tìm số trung bình \(\overline x = \frac{{{x_1} + {x_2} + ... + {x_n}}}{n}\)
Bước 2: Tính phương sai \({S^2} = \frac{1}{n}\left[ {{{\left( {{x_1} - \overline x } \right)}^2} + {{\left( {{x_2} - \overline x } \right)}^2} + ... + {{\left( {{x_n} - \overline x } \right)}^2}} \right]\) hoặc \({S^2} = \frac{1}{n}\left( {{x_1}^2 + {x_2}^2 + ... + {x_n}^2} \right) - {\overline x ^2}\)
=> Độ lệch chuẩn \(S = \sqrt {{S^2}} \)
+) Khoảng biến thiên = số liệu lớn nhất – số liệu nhỏ nhất
b)
So sánh khoảng biến thiên và độ lệch chuẩn, tỉnh nào có khoảng biến thiên và độ lệch chuẩn nhỏ hơn thì có sản lượng lúa ổn định hơn.
Lời giải chi tiết
a)
Tỉnh Thái Bình:
Số trung bình \(\overline x = \frac{{1061,9 + 1061,9 + 1053,6 + 942,6 + 1030,4}}{5} = 1030,08\)
Phương sai \({S^2} = \frac{1}{5}\left( {1061,{9^2} + 1061,{9^2} + 1053,{6^2} + 942,{6^2} + 1030,{4^2}} \right) - 1030,{08^2} = 2046,2\)
=> Độ lệch chuẩn \(S = \sqrt {{S^2}} \approx 45,2\)
+) Khoảng biến thiên \(R = 1061,9 - 942,6 = 119,3\)
Tỉnh Hậu Giang:
Số trung bình \(\overline x = \frac{{1204,6 + 1293,1 + 1231,0 + 1261,0 + 1246,1}}{5} = 1247,16\)
Phương sai \({S^2} = \frac{1}{6}\left( {1204,{6^2} + 1293,{1^2} + 1231,{0^2} + 1261,{0^2} + 1246,{1^2}} \right) - 1247,{16^2} = 875,13\)
=> Độ lệch chuẩn \(S = \sqrt {{S^2}} \approx 29,6\)
+) Khoảng biến thiên \(R = 1293,1 - 1204,6 = 88,5\)
b)
So sánh khoảng biến thiên và độ lệch chuẩn ta đều thấy tỉnh Hậu Giang có sản lượng lúa ổn định hơn.
Bài 5 trang 125 SGK Toán 10 tập 1 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và đặc biệt là ứng dụng của vectơ trong việc chứng minh các tính chất hình học.
Bài 5 trang 125 SGK Toán 10 tập 1 – Chân trời sáng tạo thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào phân tích chi tiết từng phần của bài tập.
Để xác định các vectơ trong hình, các em cần chú ý đến chiều và hướng của các đoạn thẳng. Ví dụ, nếu có đoạn thẳng AB, ta có thể biểu diễn vectơ AB bằng ký hiệu AB→. Các em cần xác định đúng điểm đầu và điểm cuối của vectơ.
Các phép toán vectơ như cộng, trừ, nhân với một số được thực hiện theo các quy tắc sau:
Để chứng minh các đẳng thức vectơ, các em có thể sử dụng các quy tắc phép toán vectơ và các tính chất của hình học. Ví dụ, để chứng minh AB→ = CD→, các em cần chứng minh rằng hai vectơ này có cùng độ dài và cùng hướng.
Vectơ là công cụ mạnh mẽ để chứng minh các tính chất của hình. Ví dụ, để chứng minh một tứ giác là hình bình hành, các em có thể chứng minh rằng hai cặp cạnh đối song song hoặc hai đường chéo cắt nhau tại trung điểm của mỗi đường.
Ví dụ: Cho hình bình hành ABCD. Chứng minh rằng AB→ + AD→ = AC→.
Lời giải:
Áp dụng quy tắc hình bình hành, ta có: AB→ + AD→ = AE→, trong đó E là đỉnh thứ tư của hình bình hành ABEF. Vì ABCD là hình bình hành nên E trùng với C. Do đó, AB→ + AD→ = AC→.
Bài 5 trang 125 SGK Toán 10 tập 1 – Chân trời sáng tạo là một bài tập quan trọng giúp các em củng cố kiến thức về vectơ và ứng dụng của vectơ trong hình học. Hy vọng với lời giải chi tiết và các lưu ý trên, các em sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả.