Logo Header
  1. Môn Toán
  2. Giải bài 10 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 10 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 10 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn cách giải bài 10 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.

Cho tứ giác lồi ABCD có các đường chéo AC = x,BD = y và góc giữa AC và BD bằng alpha Gọi S là diện tích của tứ giác ABCD.

Đề bài

Cho tứ giác lồi ABCD có các đường chéo \(AC = x,BD = y\) và góc giữa AC và BD bằng \(\alpha .\) Gọi S là diện tích của tứ giác ABCD.

a) Chứng minh \(S = \frac{1}{2}xy.\sin \alpha \)

b) Nêu kết quả trong trường hợp \(AC \bot BD.\)

Phương pháp giải - Xem chi tiếtGiải bài 10 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo 1

a) Tính diện tích 4 tam giác nhỏ theo \(\sin \alpha \).

Chú ý: \(\sin ({180^o} - \alpha ) = \sin \alpha \)

b) \(\alpha = {90^o}\) thì \(\sin \alpha = 1\)

Lời giải chi tiết

Giải bài 10 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo 2

Gọi O là giao điểm của AC và BD.

a) Áp dụng công thức \(S = \frac{1}{2}ac.\sin B\), ta có:

\(\begin{array}{l}{S_{OAD}} = \frac{1}{2}.OA.OD.\sin \alpha ;\quad {S_{OBC}} = \frac{1}{2}.OB.OC.\sin \alpha ;\\{S_{OAB}} = \frac{1}{2}.OA.OB.\sin ({180^o} - \alpha );\quad {S_{OCD}} = \frac{1}{2}.OD.OC.\sin ({180^o} - \alpha ).\end{array}\)

Mà \(\sin ({180^o} - \alpha ) = \sin \alpha \)

\( \Rightarrow {S_{OAB}} = \frac{1}{2}.OA.OB.\sin \alpha ;\quad {S_{OCD}} = \frac{1}{2}.OD.OC.\sin \alpha .\)

\(\begin{array}{l} \Rightarrow {S_{ABCD}} = \left( {{S_{OAD}} + {S_{OAB}}} \right) + \left( {{S_{OBC}} + {S_{OCD}}} \right)\\ = \frac{1}{2}.OA.\sin \alpha .(OD + OB) + \frac{1}{2}.OC.\sin \alpha .(OB + OD)\\ = \frac{1}{2}.OA.\sin \alpha .BD + \frac{1}{2}.OC.\sin \alpha .BD\\ = \frac{1}{2}.BD.\sin \alpha .(OA + OC)\\ = \frac{1}{2}.AC.BD.\sin \alpha = \frac{1}{2}.x.y.\sin \alpha .\end{array}\)

b) Nếu \(AC \bot BD\) thì \(\alpha = {90^o} \Rightarrow \sin \alpha = 1.\)

\( \Rightarrow {S_{ABCD}} = \frac{1}{2}.x.y.1 = \frac{1}{2}.x.y.\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 10 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo đặc sắc thuộc chuyên mục giải sgk toán 10 trên nền tảng môn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 10 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo: Tổng quan

Bài 10 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.

Nội dung bài tập

Bài 10 thường bao gồm các dạng bài tập sau:

  • Tìm vectơ: Xác định vectơ biểu diễn một đoạn thẳng hoặc một đường thẳng.
  • Thực hiện phép toán vectơ: Cộng, trừ vectơ, tính tích của một số với vectơ.
  • Chứng minh đẳng thức vectơ: Sử dụng các tính chất của phép toán vectơ để chứng minh đẳng thức.
  • Ứng dụng vectơ vào hình học: Giải quyết các bài toán liên quan đến hình học phẳng, chẳng hạn như chứng minh ba điểm thẳng hàng, hai đường thẳng song song, hoặc hai tam giác bằng nhau.

Lời giải chi tiết bài 10 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ cung cấp lời giải chi tiết cho từng phần của bài 10. Lưu ý rằng, lời giải này chỉ mang tính chất tham khảo, bạn nên tự mình suy nghĩ và giải bài tập trước khi xem lời giải để rèn luyện kỹ năng giải toán.

Phần 1: Tìm vectơ

Ví dụ: Cho tam giác ABC. Tìm vectơ biểu diễn cạnh BC.

Lời giải: Vectơ biểu diễn cạnh BC là BC.

Phần 2: Thực hiện phép toán vectơ

Ví dụ: Cho hai vectơ ab. Tính a + b.

Lời giải: Để tính a + b, ta thực hiện phép cộng các thành phần tương ứng của hai vectơ. Nếu a = (x1, y1)b = (x2, y2) thì a + b = (x1 + x2, y1 + y2).

Phần 3: Chứng minh đẳng thức vectơ

Ví dụ: Chứng minh rằng AB + BC = AC.

Lời giải: Theo quy tắc cộng vectơ, ta có AB + BC = AC. Do đó, đẳng thức được chứng minh.

Phần 4: Ứng dụng vectơ vào hình học

Ví dụ: Chứng minh rằng ba điểm A, B, C thẳng hàng.

Lời giải: Để chứng minh ba điểm A, B, C thẳng hàng, ta cần chứng minh rằng có một vectơ cùng phương với hai vectơ khác. Ví dụ, ta có thể chứng minh rằng ABAC cùng phương.

Mẹo giải bài tập vectơ

  • Vẽ hình: Vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Sử dụng quy tắc cộng vectơ: Quy tắc cộng vectơ là công cụ quan trọng để giải quyết các bài toán liên quan đến vectơ.
  • Áp dụng các tính chất của phép toán vectơ: Các tính chất của phép toán vectơ giúp bạn đơn giản hóa bài toán và tìm ra lời giải.
  • Luyện tập thường xuyên: Luyện tập thường xuyên giúp bạn nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:

  1. Bài 11 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo
  2. Bài 12 trang 74 SGK Toán 10 tập 1 – Chân trời sáng tạo
  3. Các bài tập trắc nghiệm về vectơ

Kết luận

Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong việc giải bài 10 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo và các bài tập tương tự. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 10