Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn cách giải bài 10 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.
Cho tứ giác lồi ABCD có các đường chéo AC = x,BD = y và góc giữa AC và BD bằng alpha Gọi S là diện tích của tứ giác ABCD.
Đề bài
Cho tứ giác lồi ABCD có các đường chéo \(AC = x,BD = y\) và góc giữa AC và BD bằng \(\alpha .\) Gọi S là diện tích của tứ giác ABCD.
a) Chứng minh \(S = \frac{1}{2}xy.\sin \alpha \)
b) Nêu kết quả trong trường hợp \(AC \bot BD.\)
Phương pháp giải - Xem chi tiết
a) Tính diện tích 4 tam giác nhỏ theo \(\sin \alpha \).
Chú ý: \(\sin ({180^o} - \alpha ) = \sin \alpha \)
b) \(\alpha = {90^o}\) thì \(\sin \alpha = 1\)
Lời giải chi tiết
Gọi O là giao điểm của AC và BD.
a) Áp dụng công thức \(S = \frac{1}{2}ac.\sin B\), ta có:
\(\begin{array}{l}{S_{OAD}} = \frac{1}{2}.OA.OD.\sin \alpha ;\quad {S_{OBC}} = \frac{1}{2}.OB.OC.\sin \alpha ;\\{S_{OAB}} = \frac{1}{2}.OA.OB.\sin ({180^o} - \alpha );\quad {S_{OCD}} = \frac{1}{2}.OD.OC.\sin ({180^o} - \alpha ).\end{array}\)
Mà \(\sin ({180^o} - \alpha ) = \sin \alpha \)
\( \Rightarrow {S_{OAB}} = \frac{1}{2}.OA.OB.\sin \alpha ;\quad {S_{OCD}} = \frac{1}{2}.OD.OC.\sin \alpha .\)
\(\begin{array}{l} \Rightarrow {S_{ABCD}} = \left( {{S_{OAD}} + {S_{OAB}}} \right) + \left( {{S_{OBC}} + {S_{OCD}}} \right)\\ = \frac{1}{2}.OA.\sin \alpha .(OD + OB) + \frac{1}{2}.OC.\sin \alpha .(OB + OD)\\ = \frac{1}{2}.OA.\sin \alpha .BD + \frac{1}{2}.OC.\sin \alpha .BD\\ = \frac{1}{2}.BD.\sin \alpha .(OA + OC)\\ = \frac{1}{2}.AC.BD.\sin \alpha = \frac{1}{2}.x.y.\sin \alpha .\end{array}\)
b) Nếu \(AC \bot BD\) thì \(\alpha = {90^o} \Rightarrow \sin \alpha = 1.\)
\( \Rightarrow {S_{ABCD}} = \frac{1}{2}.x.y.1 = \frac{1}{2}.x.y.\)
Bài 10 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.
Bài 10 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ cung cấp lời giải chi tiết cho từng phần của bài 10. Lưu ý rằng, lời giải này chỉ mang tính chất tham khảo, bạn nên tự mình suy nghĩ và giải bài tập trước khi xem lời giải để rèn luyện kỹ năng giải toán.
Ví dụ: Cho tam giác ABC. Tìm vectơ biểu diễn cạnh BC.
Lời giải: Vectơ biểu diễn cạnh BC là BC.
Ví dụ: Cho hai vectơ a và b. Tính a + b.
Lời giải: Để tính a + b, ta thực hiện phép cộng các thành phần tương ứng của hai vectơ. Nếu a = (x1, y1) và b = (x2, y2) thì a + b = (x1 + x2, y1 + y2).
Ví dụ: Chứng minh rằng AB + BC = AC.
Lời giải: Theo quy tắc cộng vectơ, ta có AB + BC = AC. Do đó, đẳng thức được chứng minh.
Ví dụ: Chứng minh rằng ba điểm A, B, C thẳng hàng.
Lời giải: Để chứng minh ba điểm A, B, C thẳng hàng, ta cần chứng minh rằng có một vectơ cùng phương với hai vectơ khác. Ví dụ, ta có thể chứng minh rằng AB và AC cùng phương.
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:
Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong việc giải bài 10 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo và các bài tập tương tự. Chúc bạn học tập tốt!