Bài 6 trang 97 SGK Toán 10 tập 1 thuộc chương trình học Toán 10 Chân trời sáng tạo, yêu cầu học sinh vận dụng kiến thức về vectơ để giải quyết các bài toán liên quan đến hình học. Bài tập này giúp củng cố lý thuyết và rèn luyện kỹ năng giải toán.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6 trang 97 SGK Toán 10 tập 1, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho 2 điểm phân biệt A và B
Đề bài
Cho 2 điểm phân biệt A và B.
a) Xác định điểm O sao cho \(\overrightarrow {OA} + 3\overrightarrow {OB} = \overrightarrow 0 \).
b) Chứng minh rằng với mọi điểm M, ta có \(\overrightarrow {MA} + 3\overrightarrow {MB} = 4\overrightarrow {MO} \).
Phương pháp giải - Xem chi tiết
a) Chèn điểm: \(\overrightarrow {OA} = \overrightarrow {OB} + \overrightarrow {BA} \).
Từ đó tìm \( \overrightarrow {OB}\) theo \(\overrightarrow {AB} \) đã biết.
b) Chèn điểm O, làm xuất hiện \({\overrightarrow {MO} }\) ở vế trái.
Lời giải chi tiết
a) Ta có:
\(\begin{array}{l}\overrightarrow {OA} + 3\overrightarrow {OB} = \vec 0\\ \Leftrightarrow \overrightarrow {OB} + \overrightarrow {BA} + 3\overrightarrow {OB} = \vec 0\\ \Leftrightarrow \overrightarrow {OB} + 3\overrightarrow {OB} = - \overrightarrow {BA} \\ \Leftrightarrow 4\overrightarrow {OB} = \overrightarrow {AB} \\ \Leftrightarrow \overrightarrow {OB} = \frac{1}{4}\overrightarrow {AB} \end{array}\)
Khi đó \(\overrightarrow {OB} \) và \(\overrightarrow {AB} \) cùng chiều.
Vậy O thuộc đoạn AB sao cho \(OB = \frac{1}{4}AB\).
b) Ta có:
\(\begin{array}{l}\overrightarrow {MA} + 3\overrightarrow {MB} = \left( {\overrightarrow {MO} + \overrightarrow {OA} } \right) + 3\left( {\overrightarrow {MO} + \overrightarrow {OB} } \right)\\ = \left( {\overrightarrow {MO} + 3\overrightarrow {MO} } \right) + \left( {\overrightarrow {OA} + 3\overrightarrow {OB} } \right)\\ = 4\overrightarrow {MO} + \overrightarrow 0 = 4\overrightarrow {MO}\end{array}\)
Bài 6 trang 97 SGK Toán 10 tập 1 – Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 10, tập trung vào việc ứng dụng các kiến thức về vectơ trong hình học. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào phân tích từng phần của bài toán. Bài 6 thường yêu cầu học sinh chứng minh một đẳng thức vectơ hoặc giải một bài toán hình học sử dụng vectơ. Dưới đây là một ví dụ minh họa:
Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2
Vì M là trung điểm của BC, ta có: overrightarrow{BM} =overrightarrow{MC}. Do đó, overrightarrow{BC} = 2overrightarrow{BM}.
Áp dụng quy tắc cộng vectơ, ta có: overrightarrow{AC} =overrightarrow{AB} +overrightarrow{BC}.
Thay overrightarrow{BC} = 2overrightarrow{BM} vào đẳng thức trên, ta được: overrightarrow{AC} =overrightarrow{AB} + 2overrightarrow{BM}.
Suy ra: overrightarrow{BM} = (overrightarrow{AC} -overrightarrow{AB})/2.
Ta có: overrightarrow{AM} =overrightarrow{AB} +overrightarrow{BM} =overrightarrow{AB} + (overrightarrow{AC} -overrightarrow{AB})/2 = (overrightarrow{AB} +overrightarrow{AC})/2.
Vậy, overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2 (đpcm).
Ngoài bài 6 trang 97, SGK Toán 10 tập 1 – Chân trời sáng tạo còn nhiều bài tập khác liên quan đến vectơ. Các em học sinh có thể luyện tập thêm các bài tập sau để củng cố kiến thức:
Để giải bài tập về vectơ một cách hiệu quả, các em học sinh nên:
Bài 6 trang 97 SGK Toán 10 tập 1 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải toán về vectơ. Hy vọng với lời giải chi tiết và các lời khuyên trên, các em học sinh sẽ tự tin hơn khi đối mặt với bài tập này và các bài tập tương tự trong tương lai.