Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 5 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc học Toán đôi khi có thể gặp nhiều khó khăn. Vì vậy, chúng tôi luôn cố gắng cung cấp những giải pháp tốt nhất để giúp bạn nắm vững kiến thức và tự tin hơn trong học tập.
Trong số 35 học sinh của lớp 10H, có 20 học sinh thích môn Toán, 16 học sinh thích môn Tiếng Anh và 12 học sinh thích cả hai môn này. Hỏi lớp 10H: a) Có bao nhiêu học sinh thích ít nhất một trong hai môn Toán và Tiếng Anh? b) Có bao nhiêu học sinh không thích cả hai môn này?
Đề bài
Trong số 35 học sinh của lớp 10H, có 20 học sinh thích môn Toán, 16 học sinh thích môn Tiếng Anh và 12 học sinh thích cả hai môn này. Hỏi lớp 10H:
a) Có bao nhiêu học sinh thích ít nhất một trong hai môn Toán và Tiếng Anh?
b) Có bao nhiêu học sinh không thích cả hai môn này?
Phương pháp giải - Xem chi tiết
Kí hiệu A, B lần lượt là tập hợp các học sinh thích môn Toán và Tiếng Anh.
Sử dụng biểu đồ Ven, minh họa tập hợp các thích ít nhất một trong hai môn Toán và Tiếng Anh (\(A \cup B\)) và các học sinh không thích cả hai môn này.
Lời giải chi tiết
Gọi A, B lần lượt là tập hợp các học sinh thích môn Toán và Tiếng Anh, X là tập hợp học sinh lớp 10H.
Theo giả thiết, \(n(A) = 20,n(B) = 16,n(A \cap B) = 12,n(X) = 35\)
a) Nhận thấy rằng, nếu tính tổng \(n(A) + n(B)\) thì ta được số học sinh thích ít nhất một trong hai môn Toán và Tiếng Anh, nhưng số học sinh thích cả hai môn Toán và Tiếng Anh được tính hai lần. Do đó, số học sinh thích ít nhất một trong hai môn Toán và Tiếng Anh là:
\(n(A \cup B) = n(A) + n(B) - n(A \cap B) = 20 + 16 - 12 = 24\)
b) Trong số 35 học sinh lớp 10H, có 24 học sinh thích ít nhất một trong hai môn Toán và Tiếng Anh, còn lại số học sinh không thích cả hai môn này là: \(35 - 24 = 11\) (học sinh).
Bài 5 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về tập hợp, các phép toán trên tập hợp, và các tính chất cơ bản của tập hợp để giải quyết các bài toán cụ thể. Bài tập này thường yêu cầu học sinh xác định các tập hợp, tìm phần tử thuộc tập hợp, thực hiện các phép hợp, giao, hiệu, bù của các tập hợp, và chứng minh các đẳng thức liên quan đến tập hợp.
Bài 5 thường bao gồm một số câu hỏi nhỏ, mỗi câu hỏi yêu cầu học sinh thực hiện một thao tác cụ thể trên tập hợp. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và định nghĩa cơ bản về tập hợp, bao gồm:
Để giúp bạn hiểu rõ hơn về cách giải bài 5 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo, chúng tôi sẽ cung cấp hướng dẫn giải chi tiết từng phần của bài tập. (Ở đây sẽ là giải chi tiết từng câu hỏi của bài 5, ví dụ:)
Cho A = {1, 2, 3, 4} và B = {3, 4, 5, 6}. Tìm A ∪ B.
Giải: A ∪ B = {1, 2, 3, 4, 5, 6}.
Cho A = {1, 2, 3, 4} và B = {3, 4, 5, 6}. Tìm A ∩ B.
Giải: A ∩ B = {3, 4}.
Ngoài việc giải trực tiếp các bài tập về tập hợp, học sinh cũng có thể gặp các dạng bài tập khác, chẳng hạn như:
Để giải quyết các dạng bài tập này, học sinh cần rèn luyện kỹ năng tư duy logic và khả năng phân tích vấn đề.
Khi giải bài tập về tập hợp, học sinh cần lưu ý một số điều sau:
Để củng cố kiến thức về tập hợp, bạn có thể làm thêm các bài tập sau:
Bài 5 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh nắm vững kiến thức cơ bản về tập hợp. Hy vọng rằng với hướng dẫn chi tiết và các lưu ý trên, bạn sẽ có thể giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!