Logo Header
  1. Môn Toán
  2. Giải bài 5 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 5 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 5 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 5 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc học Toán đôi khi có thể gặp nhiều khó khăn. Vì vậy, chúng tôi luôn cố gắng cung cấp những giải pháp tốt nhất để giúp bạn nắm vững kiến thức và tự tin hơn trong học tập.

Trong số 35 học sinh của lớp 10H, có 20 học sinh thích môn Toán, 16 học sinh thích môn Tiếng Anh và 12 học sinh thích cả hai môn này. Hỏi lớp 10H: a) Có bao nhiêu học sinh thích ít nhất một trong hai môn Toán và Tiếng Anh? b) Có bao nhiêu học sinh không thích cả hai môn này?

Đề bài

Trong số 35 học sinh của lớp 10H, có 20 học sinh thích môn Toán, 16 học sinh thích môn Tiếng Anh và 12 học sinh thích cả hai môn này. Hỏi lớp 10H:

a) Có bao nhiêu học sinh thích ít nhất một trong hai môn Toán và Tiếng Anh?

b) Có bao nhiêu học sinh không thích cả hai môn này?

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo 1

Kí hiệu A, B lần lượt là tập hợp các học sinh thích môn Toán và Tiếng Anh.

Sử dụng biểu đồ Ven, minh họa tập hợp các thích ít nhất một trong hai môn Toán và Tiếng Anh (\(A \cup B\)) và các học sinh không thích cả hai môn này.

Lời giải chi tiết

Gọi A, B lần lượt là tập hợp các học sinh thích môn Toán và Tiếng Anh, X là tập hợp học sinh lớp 10H.

Theo giả thiết, \(n(A) = 20,n(B) = 16,n(A \cap B) = 12,n(X) = 35\)

Giải bài 5 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo 2

a) Nhận thấy rằng, nếu tính tổng \(n(A) + n(B)\) thì ta được số học sinh thích ít nhất một trong hai môn Toán và Tiếng Anh, nhưng số học sinh thích cả hai môn Toán và Tiếng Anh được tính hai lần. Do đó, số học sinh thích ít nhất một trong hai môn Toán và Tiếng Anh là:

\(n(A \cup B) = n(A) + n(B) - n(A \cap B) = 20 + 16 - 12 = 24\)

b) Trong số 35 học sinh lớp 10H, có 24 học sinh thích ít nhất một trong hai môn Toán và Tiếng Anh, còn lại số học sinh không thích cả hai môn này là: \(35 - 24 = 11\) (học sinh).

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 5 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo đặc sắc thuộc chuyên mục bài tập toán 10 trên nền tảng đề thi toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 5 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo: Tổng quan

Bài 5 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về tập hợp, các phép toán trên tập hợp, và các tính chất cơ bản của tập hợp để giải quyết các bài toán cụ thể. Bài tập này thường yêu cầu học sinh xác định các tập hợp, tìm phần tử thuộc tập hợp, thực hiện các phép hợp, giao, hiệu, bù của các tập hợp, và chứng minh các đẳng thức liên quan đến tập hợp.

Nội dung chi tiết bài 5 trang 25

Bài 5 thường bao gồm một số câu hỏi nhỏ, mỗi câu hỏi yêu cầu học sinh thực hiện một thao tác cụ thể trên tập hợp. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và định nghĩa cơ bản về tập hợp, bao gồm:

  • Tập hợp: Một tập hợp là một nhóm các đối tượng được xác định rõ ràng.
  • Phần tử của tập hợp: Một đối tượng thuộc tập hợp được gọi là phần tử của tập hợp.
  • Phép hợp (∪): Phép hợp của hai tập hợp A và B là tập hợp chứa tất cả các phần tử thuộc A hoặc B.
  • Phép giao (∩): Phép giao của hai tập hợp A và B là tập hợp chứa tất cả các phần tử thuộc cả A và B.
  • Phép hiệu (\): Phép hiệu của hai tập hợp A và B là tập hợp chứa tất cả các phần tử thuộc A nhưng không thuộc B.
  • Phép bù (CA): Phép bù của tập hợp A trong tập hợp U (tập vũ trụ) là tập hợp chứa tất cả các phần tử thuộc U nhưng không thuộc A.

Hướng dẫn giải chi tiết từng phần của bài 5

Để giúp bạn hiểu rõ hơn về cách giải bài 5 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo, chúng tôi sẽ cung cấp hướng dẫn giải chi tiết từng phần của bài tập. (Ở đây sẽ là giải chi tiết từng câu hỏi của bài 5, ví dụ:)

Ví dụ: Câu a)

Cho A = {1, 2, 3, 4} và B = {3, 4, 5, 6}. Tìm A ∪ B.

Giải: A ∪ B = {1, 2, 3, 4, 5, 6}.

Ví dụ: Câu b)

Cho A = {1, 2, 3, 4} và B = {3, 4, 5, 6}. Tìm A ∩ B.

Giải: A ∩ B = {3, 4}.

Các dạng bài tập thường gặp và phương pháp giải

Ngoài việc giải trực tiếp các bài tập về tập hợp, học sinh cũng có thể gặp các dạng bài tập khác, chẳng hạn như:

  • Chứng minh đẳng thức tập hợp: Sử dụng các tính chất của các phép toán trên tập hợp để chứng minh đẳng thức.
  • Giải các bài toán ứng dụng: Vận dụng kiến thức về tập hợp để giải quyết các bài toán thực tế.

Để giải quyết các dạng bài tập này, học sinh cần rèn luyện kỹ năng tư duy logic và khả năng phân tích vấn đề.

Lưu ý khi giải bài tập về tập hợp

Khi giải bài tập về tập hợp, học sinh cần lưu ý một số điều sau:

  • Đọc kỹ đề bài: Hiểu rõ yêu cầu của đề bài trước khi bắt đầu giải.
  • Xác định đúng các tập hợp: Xác định chính xác các tập hợp được đề cập trong bài toán.
  • Sử dụng đúng các ký hiệu: Sử dụng đúng các ký hiệu toán học để biểu diễn các tập hợp và các phép toán trên tập hợp.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập luyện tập

Để củng cố kiến thức về tập hợp, bạn có thể làm thêm các bài tập sau:

  1. Cho A = {a, b, c} và B = {b, c, d}. Tìm A ∪ B, A ∩ B, A \ B, B \ A.
  2. Chứng minh rằng A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

Kết luận

Bài 5 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh nắm vững kiến thức cơ bản về tập hợp. Hy vọng rằng với hướng dẫn chi tiết và các lưu ý trên, bạn sẽ có thể giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 10