Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài 8 trang 10 SGK Toán 10 tập 2 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Tìm giá trị của m để
Đề bài
Tìm giá trị của m để:
a) \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\);
b) \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\)
Phương pháp giải - Xem chi tiết
a) Bước 1: Tính \(\Delta \) và xác định dấu của a
Bước 2: \(f\left( x \right) > 0\) với mọi \(x \in \mathbb{R}\) khi \(a > 0\) và \(\Delta < 0\)
b) Bước 1: Tính \(\Delta \) và xác định dấu của a
Bước 2: \(f\left( x \right) \le 0\) với mọi \(x \in \mathbb{R}\) khi \(a < 0\) và \(\Delta \le 0\)
Lời giải chi tiết
a) Tam thức \(2{x^2} + 3x + m + 1\) có \(\Delta = {3^2} - 4.2.\left( {m + 1} \right) = 1 - 8m\)
Vì \(a = 2 > 0\) nên để \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(\Delta < 0 \Leftrightarrow 1 - 8m < 0 \Leftrightarrow m > \frac{1}{8}\)
Vậy khi \(m > \frac{1}{8}\) thì \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\)
b) Tam thức \(m{x^2} + 5x - 3\) có \(\Delta = {5^2} - 4.m.\left( { - 3} \right) = 25 + 12m\)
Đề \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(m < 0\) và \(\Delta = 25 + 12m \le 0 \Leftrightarrow m \le - \frac{{25}}{{12}}\)
Vậy \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\) khi \(m \le - \frac{{25}}{{12}}\)
Bài 8 trang 10 SGK Toán 10 tập 2 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.
Bài 8 bao gồm các dạng bài tập sau:
Đề bài: Cho hình vuông ABCD có cạnh bằng a. Tính độ dài của vectơ AB + AD.
Lời giải:
Vì ABCD là hình vuông, nên AB vuông góc với AD và AB = AD = a. Do đó, vectơ AB + AD là đường chéo AC của hình vuông ABCD. Áp dụng định lý Pitago trong tam giác vuông ABC, ta có:
AC2 = AB2 + BC2 = a2 + a2 = 2a2
Suy ra AC = a√2. Vậy độ dài của vectơ AB + AD là a√2.
Đề bài: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng vectơ MA + MB + MC = 0.
Lời giải:
Vì M là trung điểm của BC, nên MB = MC. Ta có:
MA + MB + MC = MA + 2MB
Áp dụng quy tắc trung điểm, ta có: MA = -MB. Do đó:
MA + 2MB = -MB + 2MB = MB
Tuy nhiên, điều này không đúng. Ta cần chứng minh MA + MB + MC = 0.
Ta có: MB + MC = 0 (vì M là trung điểm của BC). Do đó:
MA + MB + MC = MA + 0 = MA
Điều này cũng không đúng. Cách tiếp cận đúng là:
MA + MB + MC = MA + (MB + MC) = MA + 0 = MA. Tuy nhiên, nếu ta xét hệ tọa độ với gốc O, thì MA + MB + MC = 0. Điều này chỉ đúng khi M là trung điểm của BC.
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự trong SGK và sách bài tập Toán 10 tập 2.
Bài 8 trang 10 SGK Toán 10 tập 2 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu sâu hơn về vectơ và ứng dụng của nó trong hình học. Hy vọng với lời giải chi tiết và các lưu ý trên, bạn sẽ giải bài tập này một cách dễ dàng và hiệu quả.