Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 2 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 2 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo

Chào mừng các em học sinh đến với lời giải chi tiết bài 2 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.

Xác định các tập hợp trong mỗi trường hợp sau: c) A là tập hợp các hình thoi, B là tập hợp các hình chữ nhật.

Đề bài

Xác định các tập hợp \(A \cap B\) trong mỗi trường hợp sau:

a) \(A = \{ x \in \mathbb{R}|{x^2} - 2 = 0\} ,\)\(B = \{ x \in \mathbb{R}|2x - 1 < 0\} \)

b) \(A = \{ (x;y)|\;x,y \in \mathbb{R},y = 2x - 1\} ,\)\(B = \{ (x;y)|\;x,y \in \mathbb{R},y = - x + 5\} \)

c) A là tập hợp các hình thoi, B là tập hợp các hình chữ nhật.

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo 1

a) \(A \cap B = \{ x|x \in A\) và \(x \in B\} \)

b) \(A \cap B = \{ (x;y)|\;x,y \in \mathbb{R},y = 2x - 1,y = - x + 5\} \)

Lời giải chi tiết

a) Phương trình \({x^2} - 2 = 0\) có hai nghiệm là \(\sqrt 2 \) và \( - \sqrt 2 \), nên \(A = \{ \sqrt 2 ; - \sqrt 2 \} \)

Tập hợp \(B = \{ x \in \mathbb{R}|2x - 1 < 0\} \) là tập hợp các số thực \(x < \frac{1}{2}\)

Từ đó \(A \cap B = \{ - \sqrt 2 \} .\)

b) \(A \cap B = \{ (x;y)|\;x,y \in \mathbb{R},y = 2x - 1,y = - x + 5\} \)

Tức là \(A \cap B\)là tập hợp các cặp số (x; y) thỏa mãn hệ phương trình: \(\left\{ \begin{array}{l}y = 2x - 1\\y = - x + 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}2x - 1 = - x + 5\\y = 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x = 6\\y = 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 3\end{array} \right.\)

Vậy \(A \cap B = \{ (2;3)\} .\)

c) A là tập hợp các hình thoi, B là tập hợp các hình chữ nhật.

\(A \cap B\) là tập hợp các hình vừa là hình chữ nhật vừa là hình thoi.

Một tứ giác bất kì thuộc \(A \cap B\) thì nó là hình chữ nhật và có 2 cạnh kề bằng nhau (hình vuông)

Do đó \(A \cap B\) là tập hợp các hình vuông.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 2 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo đặc sắc thuộc chuyên mục toán lớp 10 trên nền tảng môn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 2 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo: Tổng quan

Bài 2 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về tập hợp, các phép toán trên tập hợp, và các tính chất cơ bản của tập hợp để giải quyết các bài toán cụ thể. Bài tập này yêu cầu học sinh phải hiểu rõ định nghĩa, ký hiệu, và các quy tắc liên quan đến tập hợp.

Nội dung bài tập

Bài 2 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo thường bao gồm các dạng bài tập sau:

  • Xác định các phần tử của tập hợp: Cho một tập hợp được mô tả bằng một tính chất nào đó, học sinh cần xác định các phần tử thuộc tập hợp đó.
  • Liệt kê các phần tử của tập hợp: Cho một tập hợp, học sinh cần liệt kê tất cả các phần tử của tập hợp đó.
  • Kiểm tra một phần tử thuộc hay không thuộc tập hợp: Cho một phần tử và một tập hợp, học sinh cần xác định xem phần tử đó có thuộc tập hợp hay không.
  • Thực hiện các phép toán trên tập hợp: Hợp, giao, hiệu, phần bù của hai tập hợp.
  • Chứng minh đẳng thức tập hợp: Sử dụng các tính chất của phép toán trên tập hợp để chứng minh hai tập hợp bằng nhau.

Phương pháp giải bài tập

Để giải quyết hiệu quả bài 2 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo, học sinh cần nắm vững các phương pháp sau:

  1. Hiểu rõ định nghĩa và ký hiệu: Nắm vững định nghĩa của tập hợp, phần tử, và các ký hiệu liên quan.
  2. Vận dụng các tính chất của tập hợp: Sử dụng các tính chất như tính giao hoán, tính kết hợp, tính phân phối của các phép toán trên tập hợp.
  3. Sử dụng sơ đồ Venn: Sơ đồ Venn là một công cụ hữu ích để minh họa các tập hợp và các phép toán trên tập hợp.
  4. Phân tích bài toán: Đọc kỹ đề bài, xác định rõ yêu cầu của bài toán, và lựa chọn phương pháp giải phù hợp.
  5. Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Ví dụ: Cho A = {1, 2, 3, 4, 5} và B = {3, 4, 5, 6, 7}. Tìm A ∪ B và A ∩ B.

Giải:

  • A ∪ B = {1, 2, 3, 4, 5, 6, 7} (hợp của hai tập hợp A và B là tập hợp chứa tất cả các phần tử thuộc A hoặc B).
  • A ∩ B = {3, 4, 5} (giao của hai tập hợp A và B là tập hợp chứa tất cả các phần tử thuộc cả A và B).

Bài tập tương tự

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo các bài tập tương tự sau:

  • Bài 1 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo
  • Bài 3 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo
  • Các bài tập trong sách bài tập Toán 10 tập 1

Lời khuyên

Để học tốt môn Toán 10, các em cần:

  • Học thuộc lý thuyết và nắm vững các định nghĩa, công thức.
  • Làm đầy đủ các bài tập trong sách giáo khoa và sách bài tập.
  • Tìm hiểu thêm các tài liệu tham khảo khác để mở rộng kiến thức.
  • Hỏi thầy cô giáo hoặc bạn bè khi gặp khó khăn.
  • Luyện tập thường xuyên để rèn luyện kỹ năng giải bài tập.

Kết luận

Bài 2 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo là một bài tập quan trọng giúp các em hiểu rõ hơn về tập hợp và các phép toán trên tập hợp. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc các em học tốt!

Tài liệu, đề thi và đáp án Toán 10