Chào mừng các em học sinh đến với lời giải chi tiết bài 2 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.
Xác định các tập hợp trong mỗi trường hợp sau: c) A là tập hợp các hình thoi, B là tập hợp các hình chữ nhật.
Đề bài
Xác định các tập hợp \(A \cap B\) trong mỗi trường hợp sau:
a) \(A = \{ x \in \mathbb{R}|{x^2} - 2 = 0\} ,\)\(B = \{ x \in \mathbb{R}|2x - 1 < 0\} \)
b) \(A = \{ (x;y)|\;x,y \in \mathbb{R},y = 2x - 1\} ,\)\(B = \{ (x;y)|\;x,y \in \mathbb{R},y = - x + 5\} \)
c) A là tập hợp các hình thoi, B là tập hợp các hình chữ nhật.
Phương pháp giải - Xem chi tiết
a) \(A \cap B = \{ x|x \in A\) và \(x \in B\} \)
b) \(A \cap B = \{ (x;y)|\;x,y \in \mathbb{R},y = 2x - 1,y = - x + 5\} \)
Lời giải chi tiết
a) Phương trình \({x^2} - 2 = 0\) có hai nghiệm là \(\sqrt 2 \) và \( - \sqrt 2 \), nên \(A = \{ \sqrt 2 ; - \sqrt 2 \} \)
Tập hợp \(B = \{ x \in \mathbb{R}|2x - 1 < 0\} \) là tập hợp các số thực \(x < \frac{1}{2}\)
Từ đó \(A \cap B = \{ - \sqrt 2 \} .\)
b) \(A \cap B = \{ (x;y)|\;x,y \in \mathbb{R},y = 2x - 1,y = - x + 5\} \)
Tức là \(A \cap B\)là tập hợp các cặp số (x; y) thỏa mãn hệ phương trình: \(\left\{ \begin{array}{l}y = 2x - 1\\y = - x + 5\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}2x - 1 = - x + 5\\y = 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x = 6\\y = 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 3\end{array} \right.\)
Vậy \(A \cap B = \{ (2;3)\} .\)
c) A là tập hợp các hình thoi, B là tập hợp các hình chữ nhật.
\(A \cap B\) là tập hợp các hình vừa là hình chữ nhật vừa là hình thoi.
Một tứ giác bất kì thuộc \(A \cap B\) thì nó là hình chữ nhật và có 2 cạnh kề bằng nhau (hình vuông)
Do đó \(A \cap B\) là tập hợp các hình vuông.
Bài 2 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về tập hợp, các phép toán trên tập hợp, và các tính chất cơ bản của tập hợp để giải quyết các bài toán cụ thể. Bài tập này yêu cầu học sinh phải hiểu rõ định nghĩa, ký hiệu, và các quy tắc liên quan đến tập hợp.
Bài 2 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo thường bao gồm các dạng bài tập sau:
Để giải quyết hiệu quả bài 2 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo, học sinh cần nắm vững các phương pháp sau:
Ví dụ: Cho A = {1, 2, 3, 4, 5} và B = {3, 4, 5, 6, 7}. Tìm A ∪ B và A ∩ B.
Giải:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo các bài tập tương tự sau:
Để học tốt môn Toán 10, các em cần:
Bài 2 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo là một bài tập quan trọng giúp các em hiểu rõ hơn về tập hợp và các phép toán trên tập hợp. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc các em học tốt!