Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 1 trang 39 SGK Toán 10 tập 1 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.
Biểu diễn miền nghiệm của mỗi bất phương trình sau trên mặt phẳng tọa độ Oxy
Đề bài
Biểu diễn miền nghiệm của mỗi bất phương trình sau trên mặt phẳng tọa độ Oxy
a) \( - 2x + y - 1 \le 0\)
b) \( - x + 2y > 0\)
c) \(x - 5y < 2\)
d) \( - 3x + y + 2 \le 0\)
e) \(3(x - 1) + 4(y - 2) < 5x - 3\)
Phương pháp giải - Xem chi tiết
Bước 1: Vẽ đường thẳng \(\Delta :ax + by + c = 0\) đi qua hai điểm \(A\) và \(B.\)
Bước 2: Xét điểm \(C \notin \Delta \), kiểm tra C có thuộc miền nghiệm hay không.
Bước 3: Vẽ hình và kết luận.
Lời giải chi tiết
a) Vẽ đường thẳng \(\Delta : - 2x + y - 1 = 0\) đi qua hai điểm \(A(0;1)\) và \(B\left( { - 1; - 1} \right)\)
Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \( - 2.0 + 0 - 1 = - 1 < 0\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng kể cả bờ \(\Delta \), chứa gốc tọa độ O
(miền không gạch chéo trên hình)
b) Vẽ đường thẳng \(\Delta : - x + 2y = 0\) đi qua hai điểm \(O(0;0)\) và \(B\left( {2;1} \right)\)
Xét điểm \(A(1;0).\) Ta thấy \(A \notin \Delta \) và \( - 1 + 2.0 = - 1 < 0\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(\Delta \), không chứa điểm A (1;0)
(miền không gạch chéo trên hình)
c) Vẽ đường thẳng \(\Delta :x - 5y = 2\) đi qua hai điểm \(A(2;0)\) và \(B\left( { - 3; - 1} \right)\)
Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \(0 - 5.0 = 0 < 2\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(\Delta \), chứa gốc tọa độ O
(miền không gạch chéo trên hình)
d) Vẽ đường thẳng \(\Delta : - 3x + y + 2 = 0\) đi qua hai điểm \(A(0; - 2)\) và \(B\left( {1;1} \right)\)
Xét điểm \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \( - 3.0 + 0 + 2 = 2 > 0\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng kể cả bờ \(\Delta \), không chứa điểm O (0;0)
(miền không gạch chéo trên hình)
e) Ta có: \(3(x - 1) + 4(y - 2) < 5x - 3 \Leftrightarrow - 2x + 4y - 8 < 0 \Leftrightarrow - x + 2y - 4 < 0\)
Vẽ đường thẳng \(\Delta : - x + 2y -4 = 0\) đi qua hai điểm \(A(0;2)\) và \(B\left( {-4;0} \right)\)
Xét điểm \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \( - 0 + 2.0 -4 = -4 < 0\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(\Delta \), chứa điểm O (0;0)
(miền không gạch chéo trên hình)
Bài 1 trang 39 SGK Toán 10 tập 1 – Chân trời sáng tạo thuộc chương 1: Mệnh đề và tập hợp. Bài tập này yêu cầu học sinh vận dụng kiến thức về mệnh đề, tập hợp, các phép toán trên tập hợp để giải quyết các bài toán cụ thể. Việc nắm vững lý thuyết và kỹ năng giải bài tập là rất quan trọng để đạt kết quả tốt trong môn Toán.
Bài 1 trang 39 SGK Toán 10 tập 1 – Chân trời sáng tạo thường bao gồm các dạng bài tập sau:
Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi. Lưu ý rằng, đây chỉ là một trong nhiều cách giải bài tập, các bạn có thể tìm tòi và khám phá những phương pháp khác hiệu quả hơn.
Giả sử đề bài yêu cầu xác định tính đúng sai của mệnh đề: “Nếu a > b thì a2 > b2”.
Lời giải: Mệnh đề này sai. Ví dụ, nếu a = 1 và b = -2, thì a > b nhưng a2 = 1 < b2 = 4.
Giả sử đề bài yêu cầu tìm tập hợp các số tự nhiên chẵn nhỏ hơn 10.
Lời giải: Tập hợp các số tự nhiên chẵn nhỏ hơn 10 là: {0, 2, 4, 6, 8}.
Giả sử đề bài yêu cầu tìm tập hợp A ∪ B, biết A = {1, 2, 3} và B = {3, 4, 5}.
Lời giải: A ∪ B = {1, 2, 3, 4, 5}.
Để giải quyết tốt các bài tập về mệnh đề và tập hợp, các bạn cần lưu ý những điều sau:
Kiến thức về mệnh đề và tập hợp có ứng dụng rộng rãi trong nhiều lĩnh vực khác nhau, bao gồm:
Bài 1 trang 39 SGK Toán 10 tập 1 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về mệnh đề và tập hợp. Hy vọng rằng, với lời giải chi tiết và những lưu ý trên, các bạn học sinh sẽ tự tin hơn trong quá trình học tập môn Toán. Chúc các bạn học tốt!
Khái niệm | Định nghĩa |
---|---|
Mệnh đề | Câu khẳng định có thể đúng hoặc sai. |
Tập hợp | Một tập hợp các đối tượng xác định. |