Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài 14 trang 74 SGK Toán 10 tập 2 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.
Viết phương trình chính tắc của parabol thỏa mãn từng điều kiện sau:
Đề bài
Viết phương trình chính tắc của parabol thỏa mãn từng điều kiện sau:
a) Tiêu điểm \((4;0)\)
b) Đường chuẩn có phương trình \(x = - \frac{1}{6}\)
c) Đi qua điểm \((1;4)\)
d) Khoảng cách từ tiêu điểm đến đường chuẩn bằng 8
Phương pháp giải - Xem chi tiết
a,b) Bước 1: Xác định p
+) Tiêu điểm có tọa độ \(F\left( {\frac{p}{2};0} \right)\)
+) Đường chuẩn có phương trình \(\Delta :x + \frac{p}{2} = 0\)
Bước 2: Viết phương trình chính tắc của parabol có dạng \({y^2} = 2px\)
c) Bước 1: Gọi phương trình chính tắc của parabol có dạng \({y^2} = 2px\)
Bước 2: Thay tọa độ điểm trên tìm p
Bước 3: Xác định phương trình chính tắc
d) Bước 1: Gọi tiêu điểm và phương trình đường chuẩn tổng quát
Bước 2: Từ khoảng cách tìm p
Bước 3: Xác định phương trình chính tắc \({y^2} = 2px\)
Lời giải chi tiết
a) Tiêu điểm có tọa độ \((4;0)\) nên ta có \(p = 8\)
Suy ra phương trình chính tắc của parabol là \({y^2} = 16x\)
b) Đường chuẩn là \(x = - \frac{1}{6} \Leftrightarrow x + \frac{1}{6} = 0\), suy ra \(\frac{p}{2} = \frac{1}{6} \Leftrightarrow p = \frac{1}{3}\)
Suy ra phương trình chính tắc của parabol có dạng \({y^2} = \frac{2}{3}x\)
c) Gọi phương trình chính tắc của parabol có dạng \({y^2} = 2px\)
Thay tọa độ điểm \((1;4)\) vào phương trình \({y^2} = 2px\) ta có:
\({4^2} = 2p.1 \Rightarrow p = 8\)
Vậy phương trình chính tắc của parabol là \({y^2} = 16x\)
d) Gọi \(F\left( {\frac{p}{2};0} \right)\), \(\Delta :x + \frac{p}{2} = 0\) lần lượt là tiêu điểm và phương trình đường chuẩn của parabol ta có:
\(d\left( {F,\Delta } \right) = \frac{{\left| {\frac{p}{2} + \frac{p}{2}} \right|}}{1} = 8 \Rightarrow p = 8\)
Vậy phương trình chính tắc của parabol là \({y^2} = 16x\)
Bài 14 trang 74 SGK Toán 10 tập 2 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan. Việc giải bài tập này không chỉ giúp học sinh củng cố kiến thức lý thuyết mà còn rèn luyện kỹ năng giải quyết vấn đề thực tế.
Bài 14 trang 74 SGK Toán 10 tập 2 – Chân trời sáng tạo thường bao gồm các dạng bài tập sau:
Để giúp các bạn học sinh giải bài tập này một cách dễ dàng, chúng tôi xin trình bày lời giải chi tiết như sau:
Cho tam giác ABC. Gọi M là trung điểm của BC. Tìm vectơ AM theo vectơ AB và AC.
Lời giải:
Ta có: AM = (AB + AC) / 2. Chứng minh:
Cho hình bình hành ABCD. Chứng minh rằng AB = DC và AD = BC.
Lời giải:
Vì ABCD là hình bình hành nên:
Để giải bài tập về vectơ một cách hiệu quả, các bạn học sinh cần lưu ý những điều sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về vectơ, các bạn có thể tham khảo các bài tập tương tự sau:
Hy vọng rằng với lời giải chi tiết và những lưu ý trên, các bạn học sinh đã có thể tự tin giải bài 14 trang 74 SGK Toán 10 tập 2 – Chân trời sáng tạo. Chúc các bạn học tập tốt và đạt kết quả cao trong môn Toán!