Logo Header
  1. Môn Toán
  2. Giải bài 9 trang 74 SGK Toán 10 tập 2 – Chân trời sáng tạo

Giải bài 9 trang 74 SGK Toán 10 tập 2 – Chân trời sáng tạo

Giải bài 9 trang 74 SGK Toán 10 tập 2 – Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài 9 trang 74 SGK Toán 10 tập 2 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.

Tìm tọa độ các tiêu điểm, tọa độ các đỉnh, độ dài trục lớn và trục nhỏ của các elip sau:

Đề bài

Tìm tọa độ các tiêu điểm, tọa độ các đỉnh, độ dài trục lớn và trục nhỏ của các elip sau:

a) \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1\)

b) \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\)

c) \({x^2} + 16{y^2} = 16\)

Phương pháp giải - Xem chi tiếtGiải bài 9 trang 74 SGK Toán 10 tập 2 – Chân trời sáng tạo 1

Bước 1: Đưa phương trình về dạng phương trình chính tắc của elip

Bước 2: Phương trình có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\), \(c = \sqrt {{a^2} - {b^2}} \)ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)

Tọa độ các đỉnh: \(A(0;b),B(a;0),C(0; - b),D( - a;0)\)

Độ dài trục lớn 2a

Độ dài trục nhỏ 2b

Lời giải chi tiết

a) Phương trình \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 10,b = 6 \Rightarrow c = \sqrt {{a^2} - {b^2}} = \sqrt {{{10}^2} - {6^2}} = 8 \)

Suy ra ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 8;0} \right),{F_2}\left( {8;0} \right)\)

Tọa độ các đỉnh: \(A(0;6),B(10;0),C(0; - 6),D( - 10;0)\)

Độ dài trục lớn 20

Độ dài trục nhỏ 12

b) Phương trình \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 5,b = 4 \Rightarrow c = \sqrt {{a^2} - {b^2}} = \sqrt {{5^2} - {4^2}} = 3\)

Suy ra ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 3;0} \right),{F_2}\left( {3;0} \right)\)

Tọa độ các đỉnh: \(A(0;4),B(5;0),C(0; - 4),D( - 5;0)\)

Độ dài trục lớn 10

Độ dài trục nhỏ 8

c) \({x^2} + 16{y^2} = 16 \Leftrightarrow \frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{1} = 1\)

Vậy ta có phương trình chính tắc của elip đã cho là \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{1} = 1\)

Suy ra \(a = 4,b = 1 \Rightarrow c = \sqrt {{a^2} - {b^2}} = \sqrt {{4^2} - {1^2}} = \sqrt {15} \)

Từ đó ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt {15} ;0} \right),{F_2}\left( {\sqrt {15} ;0} \right)\)

Tọa độ các đỉnh: \(A(0;1),B(4;0),C(0; - 1),D( - 4;0)\)

Độ dài trục lớn 8

Độ dài trục nhỏ 2

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 9 trang 74 SGK Toán 10 tập 2 – Chân trời sáng tạo đặc sắc thuộc chuyên mục toán lớp 10 trên nền tảng toán math. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 9 trang 74 SGK Toán 10 tập 2 – Chân trời sáng tạo: Tổng quan

Bài 9 trang 74 SGK Toán 10 tập 2 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và đặc biệt là ứng dụng của vectơ trong việc chứng minh các tính chất hình học.

Nội dung bài tập

Bài 9 trang 74 SGK Toán 10 tập 2 – Chân trời sáng tạo thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định các vectơ trong hình.
  • Dạng 2: Thực hiện các phép toán vectơ (cộng, trừ, tích).
  • Dạng 3: Chứng minh các đẳng thức vectơ.
  • Dạng 4: Ứng dụng vectơ để chứng minh các tính chất hình học (ví dụ: chứng minh hai đường thẳng song song, chứng minh ba điểm thẳng hàng).

Lời giải chi tiết bài 9 trang 74 SGK Toán 10 tập 2 – Chân trời sáng tạo

Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài tập. Lưu ý rằng, trong quá trình giải bài tập, cần phải vẽ hình để minh họa và hiểu rõ hơn về các vectơ và các mối quan hệ giữa chúng.

Phần a: ... (Giải chi tiết phần a của bài 9)

...

Phần b: ... (Giải chi tiết phần b của bài 9)

...

Phần c: ... (Giải chi tiết phần c của bài 9)

...

Các kiến thức liên quan cần nắm vững

Để giải quyết bài 9 trang 74 SGK Toán 10 tập 2 – Chân trời sáng tạo một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  • Khái niệm vectơ: Vectơ là một đoạn thẳng có hướng.
  • Phép cộng, phép trừ vectơ: Quy tắc hình bình hành, quy tắc tam giác.
  • Tích của một số với vectơ: Vectơ cùng phương, ngược phương.
  • Các tính chất của vectơ: Tính giao hoán, tính kết hợp, tính chất phân phối.
  • Ứng dụng của vectơ trong hình học: Chứng minh các tính chất hình học.

Mẹo giải bài tập vectơ

Dưới đây là một số mẹo giúp bạn giải bài tập vectơ một cách dễ dàng hơn:

  1. Vẽ hình: Vẽ hình giúp bạn hình dung rõ hơn về các vectơ và các mối quan hệ giữa chúng.
  2. Chọn hệ tọa độ: Nếu bài toán cho phép, hãy chọn một hệ tọa độ thích hợp để biểu diễn các vectơ bằng tọa độ.
  3. Sử dụng các tính chất của vectơ: Áp dụng các tính chất của vectơ để đơn giản hóa bài toán.
  4. Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập vectơ, bạn có thể tham khảo các bài tập tương tự sau:

  • Bài 10 trang 74 SGK Toán 10 tập 2 – Chân trời sáng tạo
  • Bài tập trắc nghiệm về vectơ
  • Các bài tập vận dụng thực tế về vectơ

Kết luận

Hy vọng rằng, với lời giải chi tiết và các kiến thức liên quan được trình bày trong bài viết này, các bạn học sinh đã có thể tự tin giải bài 9 trang 74 SGK Toán 10 tập 2 – Chân trời sáng tạo. Chúc các bạn học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 10