Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 62 SGK Toán 10 tập 2 – Chân trời sáng tạo

Giải bài 2 trang 62 SGK Toán 10 tập 2 – Chân trời sáng tạo

Giải bài 2 trang 62 SGK Toán 10 tập 2 – Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn cách giải bài 2 trang 62 SGK Toán 10 tập 2 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.

Lập phương trình đường tròn trong các trường hợp sau:

Đề bài

Lập phương trình đường tròn trong các trường hợp sau:

a) \((C)\) có tâm \(I(1;5)\) và bán kính \(r = 4\)

b) \((C)\) có đường kính MN với \(M(3; - 1)\)và \(N(9;3)\)

c) \((C)\) có tâm \(I(2;1)\) và tiếp xúc với đường thẳng \(5x - 12y + 12 = 0\)

d) \((C)\) có tâm \(A(1; - 2)\) và đi qua điểm \(B(4; - 5)\)

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 62 SGK Toán 10 tập 2 – Chân trời sáng tạo 1

a) Phương trình đường tròn có dạng \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\) với tâm \(I(a;b)\) và bán kính R

b) Bước 1: Từ đường kính xác định bán kính của đường tròn

Bước 2: Xác định tâm của đường tròn (là trung điểm của đường kính)

c, d) Bước 1: Xác định bán kính của đường tròn (là khoảng cách từ tâm đến tiếp tuyến)

Bước 2: Viết phương trình đường tròn \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\) với tâm \(I(a;b)\) và bán kính R

Lời giải chi tiết

a) Đường tròn (C) tâm \(I(1;5)\), bán kính \(r = 4\) có phương trình là: \({\left( {x - 1} \right)^2} + {\left( {y - 5} \right)^2} = 16\)

b) \(MN = \sqrt {{{\left( {9 - 3} \right)}^2} + {{\left( {3 - ( - 1)} \right)}^2}} = 2\sqrt {13} \), suy ra bán kính là \(\sqrt {13} \)

Tâm của đường tròn là trung điểm của MN: \(I(6;1)\)

Đường tròn (C) tâm \(I\left( {6;1} \right)\)và bán kính là \(\sqrt {13} \) có phương trình: \({\left( {x - 6} \right)^2} + {\left( {y - 1} \right)^2} = 13\)

c) Ta có bán kính của đường tròn \(r = d\left( {I,d} \right) = \frac{{\left| {5.2 - 12.1 + 11} \right|}}{{\sqrt {{5^2} + {{12}^2}} }} = \frac{9}{{13}}\)

Đường tròn (C) tâm \(I\left( {2;1} \right)\)và bán kính là \(\frac{9}{{13}}\) có phương trình: \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = \frac{{81}}{{169}}\)

d) Bán kính của đường tròn là \(r = AB = \sqrt {{{\left( {4 - 1} \right)}^2} + {{\left( {( - 5) - ( - 2)} \right)}^2}} = 3\sqrt 2 \)

Đường tròn (C) tâm \(A(1; - 2)\)và bán kính là \(3\sqrt 2 \) có phương trình: \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 18\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 2 trang 62 SGK Toán 10 tập 2 – Chân trời sáng tạo đặc sắc thuộc chuyên mục giải sgk toán 10 trên nền tảng toán math. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 2 trang 62 SGK Toán 10 tập 2 – Chân trời sáng tạo: Tổng quan

Bài 2 trang 62 SGK Toán 10 tập 2 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của chúng.

Nội dung bài tập

Bài 2 trang 62 SGK Toán 10 tập 2 – Chân trời sáng tạo thường bao gồm các dạng bài tập sau:

  • Tìm tọa độ của vectơ: Cho các điểm trong không gian, yêu cầu tìm tọa độ của vectơ tạo bởi các điểm đó.
  • Thực hiện các phép toán vectơ: Cộng, trừ vectơ, nhân vectơ với một số thực.
  • Chứng minh đẳng thức vectơ: Sử dụng các tính chất của vectơ để chứng minh các đẳng thức cho trước.
  • Ứng dụng vectơ vào hình học: Giải các bài toán liên quan đến hình học phẳng và không gian bằng phương pháp vectơ.

Lời giải chi tiết bài 2 trang 62 SGK Toán 10 tập 2 – Chân trời sáng tạo

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ cung cấp lời giải chi tiết cho từng phần của bài tập. Lưu ý rằng, việc nắm vững các khái niệm và công thức cơ bản là rất quan trọng để giải quyết bài tập một cách hiệu quả.

Phần 1: Tìm tọa độ của vectơ

Để tìm tọa độ của vectơ, bạn cần xác định tọa độ của các điểm đầu và điểm cuối của vectơ. Sau đó, sử dụng công thức:

AB = (xB - xA; yB - yA; zB - zA)

Trong đó:

  • A(xA; yA; zA) là điểm đầu của vectơ.
  • B(xB; yB; zB) là điểm cuối của vectơ.

Phần 2: Thực hiện các phép toán vectơ

Các phép toán vectơ như cộng, trừ vectơ, nhân vectơ với một số thực được thực hiện theo các quy tắc sau:

  • a + b = (ax + bx; ay + by; az + bz)
  • a - b = (ax - bx; ay - by; az - bz)
  • k.a = (kax; kay; kaz)

Trong đó:

  • a = (ax; ay; az) và b = (bx; by; bz) là hai vectơ.
  • k là một số thực.

Phần 3: Chứng minh đẳng thức vectơ

Để chứng minh đẳng thức vectơ, bạn cần biến đổi vế trái của đẳng thức để được vế phải, hoặc ngược lại. Sử dụng các tính chất của vectơ như tính giao hoán, tính kết hợp, tính chất phân phối để thực hiện các biến đổi này.

Phần 4: Ứng dụng vectơ vào hình học

Trong các bài toán hình học, vectơ có thể được sử dụng để chứng minh các tính chất của hình, tìm mối quan hệ giữa các điểm, đường thẳng, mặt phẳng. Ví dụ, để chứng minh hai đường thẳng song song, bạn có thể chứng minh hai vectơ chỉ phương của hai đường thẳng cùng phương.

Mẹo giải bài tập vectơ hiệu quả

Để giải bài tập vectơ một cách hiệu quả, bạn nên:

  • Nắm vững các khái niệm và công thức cơ bản về vectơ.
  • Vẽ hình minh họa để hình dung rõ hơn về bài toán.
  • Sử dụng các tính chất của vectơ để đơn giản hóa bài toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Bài tập tương tự

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập vectơ, bạn có thể tham khảo các bài tập tương tự sau:

  • Bài 1 trang 62 SGK Toán 10 tập 2 – Chân trời sáng tạo
  • Bài 3 trang 62 SGK Toán 10 tập 2 – Chân trời sáng tạo
  • Các bài tập trong sách bài tập Toán 10 tập 2.

Kết luận

Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong việc giải bài 2 trang 62 SGK Toán 10 tập 2 – Chân trời sáng tạo và các bài tập vectơ khác. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 10