Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 102 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 2 trang 102 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 2 trang 102 SGK Toán 10 tập 1 – Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 2 trang 102 SGK Toán 10 tập 1 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.

Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo và AB = a, BC = 3a.

Đề bài

Cho hình chữ nhật ABCDO là giao điểm của hai đường chéo và AB = a, BC = 3a.

a) Tính độ dài các vectơ \(\overrightarrow {AC} ,\overrightarrow {BD} \)

b) Tìm trong hình ảnh vectơ đối nhau và có độ dài bằng \(\frac{{a\sqrt {10} }}{2}\)

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 102 SGK Toán 10 tập 1 – Chân trời sáng tạo 1

a) Bước 1: Tính độ dài AC, BD

Bước 2: Tính độ dài vectơ \(\left| {\overrightarrow {AB} } \right| = AB\)

b) Bước 1: Tìm các đoạn thẳng có độ dài là \(\frac{{a\sqrt {10} }}{2}\)

Bước 2: Từ các đoạn thẳng trên xác định các vecto cùng phương (giá song song hoặc trùng nhau) nhưng ngược hướng.

Lời giải chi tiết

Giải bài 2 trang 102 SGK Toán 10 tập 1 – Chân trời sáng tạo 2

a) Ta có:

\(AC = BD = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {{\left( {3a} \right)}^2}} = a\sqrt {10} \)

+) \(\left| {\overrightarrow {AC} } \right| = AC = a\sqrt {10} \)

+) \(\left| {\overrightarrow {BD} } \right| = BD = a\sqrt {10} \)

b) O là giao điểm của hai đường chéo nên ta có:

\(AO = OC = BO = OD = \frac{{a\sqrt {10} }}{2}\)

Dựa vào hình vẽ ta thấy AO CO cùng nằm trên một đường thẳng; BO DO cùng nằm trên một đường thẳng

Suy ra các cặp vectơ đối nhau và có độ dài bằng \(\frac{{a\sqrt {10} }}{2}\) là:

\(\overrightarrow {OA} \) và \(\overrightarrow {OC} \); \(\overrightarrow {AO} \) và \(\overrightarrow {CO} \); \(\overrightarrow {OB} \) và \(\overrightarrow {OD} \); \(\overrightarrow {BO} \) và \(\overrightarrow {DO} \)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 2 trang 102 SGK Toán 10 tập 1 – Chân trời sáng tạo đặc sắc thuộc chuyên mục giải bài tập toán 10 trên nền tảng soạn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 2 trang 102 SGK Toán 10 tập 1 – Chân trời sáng tạo: Tổng quan

Bài 2 trang 102 SGK Toán 10 tập 1 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của chúng.

Nội dung bài tập

Bài 2 thường bao gồm các dạng bài tập sau:

  • Tìm vectơ: Xác định các vectơ trong hình vẽ hoặc từ các điểm cho trước.
  • Thực hiện phép toán vectơ: Cộng, trừ vectơ, tính tích của một số với vectơ.
  • Chứng minh đẳng thức vectơ: Sử dụng các tính chất của vectơ để chứng minh các đẳng thức cho trước.
  • Ứng dụng vectơ vào hình học: Giải các bài toán liên quan đến hình bình hành, tam giác, và các hình đa giác khác.

Lời giải chi tiết bài 2 trang 102 SGK Toán 10 tập 1 – Chân trời sáng tạo

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ cung cấp lời giải chi tiết cho từng phần của bài 2. Lưu ý rằng, lời giải này chỉ mang tính chất tham khảo, bạn nên tự mình suy nghĩ và giải bài tập trước khi xem lời giải để rèn luyện kỹ năng giải toán.

Phần a: (Ví dụ về một phần của bài tập)

Giả sử phần a yêu cầu tìm vectơ AB. Để tìm vectơ AB, ta xác định tọa độ của điểm A và điểm B, sau đó lấy tọa độ của điểm B trừ đi tọa độ của điểm A. Ví dụ, nếu A(xA, yA) và B(xB, yB) thì vectơ AB = (xB - xA, yB - yA).

Phần b: (Ví dụ về một phần của bài tập)

Giả sử phần b yêu cầu chứng minh rằng vectơ AC = vectơ AB + vectơ BC. Để chứng minh đẳng thức này, ta sử dụng quy tắc cộng vectơ. Theo quy tắc cộng vectơ, vectơ AB + vectơ BC là vectơ có điểm đầu là điểm A và điểm cuối là điểm C, tức là vectơ AC. Do đó, đẳng thức AC = AB + BC được chứng minh.

Mẹo giải bài tập vectơ hiệu quả

Để giải các bài tập về vectơ một cách hiệu quả, bạn nên:

  • Nắm vững các định nghĩa và tính chất của vectơ: Đây là nền tảng cơ bản để giải quyết mọi bài tập về vectơ.
  • Vẽ hình minh họa: Việc vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Sử dụng quy tắc cộng vectơ và quy tắc nhân vectơ: Đây là những công cụ quan trọng để giải quyết các bài toán về vectơ.
  • Luyện tập thường xuyên: Việc luyện tập thường xuyên giúp bạn nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Bài tập tương tự

Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, bạn có thể tham khảo các bài tập tương tự sau:

  1. Bài 1 trang 102 SGK Toán 10 tập 1 – Chân trời sáng tạo
  2. Bài 3 trang 102 SGK Toán 10 tập 1 – Chân trời sáng tạo
  3. Các bài tập trong sách bài tập Toán 10

Kết luận

Hy vọng rằng, với lời giải chi tiết và những mẹo giải bài tập hiệu quả mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong việc giải bài 2 trang 102 SGK Toán 10 tập 1 – Chân trời sáng tạo và các bài tập về vectơ khác. Chúc bạn học tập tốt!

Khái niệmĐịnh nghĩa
VectơMột đoạn thẳng có hướng.
Phép cộng vectơQuy tắc hình bình hành hoặc quy tắc tam giác.

Tài liệu, đề thi và đáp án Toán 10