Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài 7 trang 86 SGK Toán 10 tập 2 theo chương trình Chân trời sáng tạo.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.
Sắp xếp 5 tấm thẻ cùng loại được đánh số từ 1 đến 5 một cách ngẫu nhiên để tạo thành một số tự nhiên a có 5 chữ số. Tính xác suất của mỗi biến cố sau:
Đề bài
Sắp xếp 5 tấm thẻ cùng loại được đánh số từ 1 đến 5 một cách ngẫu nhiên để tạo thành một số tự nhiên a có 5 chữ số. Tính xác suất của mỗi biến cố sau:
a) “a là số chẵn”
b) “a chia hết cho 5”
c) “\(a \ge 32000\)”
d) “Trong các chữ số của a không có hai chữ số lẻ nào đứng cạnh nhau”
Phương pháp giải - Xem chi tiết
Bước 1: Xác định không gian mẫu
Bước 2: Xác định số kết quả thuận lợi cho biến cố
Bước 3: Tính xác suất bằng công thức \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\)
Lời giải chi tiết
Gọi số lập được có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}} \) với \(\left( {{a_1},{a_2},{a_3},{a_4},{a_5}} \right) = 1,2,3,4,5\)
Tổng số khả năng xảy ra của phép thử là \(n\left( \Omega \right) = 5!\)
a) Biến cố “a là số chẵn” xảy ra khi chữ số tận cùng là số chẵn, suy ra \({a_5} = \left\{ {2,4} \right\}\)
Số kết quả thuận lợi cho biến cố “a là số chẵn” là \(n = 4!.2\)
Vậy xác suất của biến cố “a là số chẵn” là \(P = \frac{{4!.2}}{{5!}} = \frac{2}{5}\)
b) Biến cố “a chia hết cho 5” xảy ra khi chữ số tận cùng là số 5
Suy ra, số kết quả thuận lợi cho biến cố “a chia hết cho 5” là \(n = 4!.1\)
Vậy xác suất của biến cố “a là số chẵn” là \(P = \frac{{4!.1}}{{5!}} = \frac{1}{5}\)
c) Biến cố “\(a \ge 32000\)” xảy ra khi a có dạng như dưới đây\(\overline {5{a_2}{a_3}{a_4}{a_5}} ;\overline {4{a_2}{a_3}{a_4}{a_5}} ;\overline {34{a_3}{a_4}{a_5}} ;\overline {35{a_3}{a_4}{a_5}} ;\overline {32{a_3}{a_4}{a_5}} \)
Suy ra, số kết quả thuận lợi cho biến cố “\(a \ge 32000\)” là \(n = 2.4! + 3.3!\)
Vậy xác suất của biến cố “\(a \ge 32000\)” là \(P = \frac{{2.4! + 3.3!}}{{5!}} = \frac{{11}}{{20}}\)
d) Để sắp xếp các chữ số của a ta cần thực hiện hai công đoạn
Công đoạn 1: Sắp xếp 2 chữ số chẵn trước có \(2!\) cách
Công đoạn 2: Sắp xếp 3 chũ số lẻ xen vào 3 chỗ trồng tạo bởi 2 chữ số chẵn có \(3!\) cách
Suy ra, số kết quả thuận lợi cho biến cố “Trong các chữ số của a không có hai chữ số lẻ nào đứng cạnh nhau” là \(2!.3!\)
Vậy xác suất của biến cố là \(P = \frac{{2!.3!}}{{5!}} = \frac{1}{{10}}\)
Bài 7 trang 86 SGK Toán 10 tập 2 – Chân trời sáng tạo thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này yêu cầu học sinh vận dụng kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ và các ứng dụng thực tế.
Bài 7 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh:
Để giải bài 7 trang 86 SGK Toán 10 tập 2 – Chân trời sáng tạo hiệu quả, bạn cần nắm vững các kiến thức sau:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 7 trang 86 SGK Toán 10 tập 2 – Chân trời sáng tạo:
Cho hai vectơ a và b. Tính a.b nếu biết |a| = 3, |b| = 4 và góc giữa hai vectơ là 60°.
Lời giải:
a.b = |a||b|cos(θ) = 3 * 4 * cos(60°) = 12 * 0.5 = 6
Cho hai vectơ a và b. Xác định góc giữa hai vectơ nếu biết a.b = -5, |a| = 2 và |b| = 5.
Lời giải:
cos(θ) = (a.b) / (|a||b|) = -5 / (2 * 5) = -0.5
θ = arccos(-0.5) = 120°
Chứng minh rằng nếu a vuông góc với b thì a.b = 0.
Lời giải:
Nếu a vuông góc với b thì góc giữa hai vectơ là 90°. Do đó, cos(90°) = 0. Áp dụng công thức tích vô hướng, ta có a.b = |a||b|cos(90°) = |a||b| * 0 = 0.
Để củng cố kiến thức về tích vô hướng, bạn có thể làm thêm các bài tập tương tự trong SGK Toán 10 tập 2 và các tài liệu tham khảo khác.
Bài 7 trang 86 SGK Toán 10 tập 2 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu sâu hơn về tích vô hướng của hai vectơ và các ứng dụng của nó. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn khi giải các bài tập tương tự.