Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 1 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong môn Toán.
Xét dấu của các tam thức bậc hai sau
Đề bài
Xét dấu của các tam thức bậc hai sau:
a) \(f\left( x \right) = 6{x^2} + 41x + 44\)
b) \(g\left( x \right) = - 3{x^2} + x - 1\)
c) \(h\left( x \right) = 9{x^2} + 12x + 4\)
Phương pháp giải - Xem chi tiết
Bước 1: Tính và xác định dấu của biệt thức \(\Delta = {b^2} - 4ac\)
Bước 2: Xác định nghiệm của \(f\left( x \right)\)nếu có
Bước 3: Các định dấu của hệ số a
Bước 4: Xác định dấu của \(f\left( x \right)\)
Lời giải chi tiết
a) \(f\left( x \right) = 6{x^2} + 41x + 44\) có \(\Delta = 625 > 0\), có hai nghiệm phân biệt là \({x_1} = - \frac{{11}}{2},{x_2} = - \frac{4}{3}\) và có \(a = 6 > 0\)
Ta có bảng xét dấu \(f\left( x \right)\)như sau:
Vậy \(f\left( x \right)\) dương trong khoảng \(\left( { - \infty ; - \frac{{11}}{2}} \right) \cup \left( { - \frac{4}{3}; + \infty } \right)\) và âm trong khoảng \(\left( { - \frac{{11}}{2}; - \frac{4}{3}} \right)\)
b) \(g\left( x \right) = - 3{x^2} + x - 1\) có \(\Delta = - 11 < 0\) và có \(a = - 3 < 0\)
Ta có bảng xét dấu như sau
Vậy \(g\left( x \right)\)luôn âm với mọi \(x \in \mathbb{R}\)
c) \(h\left( x \right) = 9{x^2} + 12x + 4\) có \(\Delta = 0\), có nghiệm kép là \({x_1} = {x_2} = - \frac{2}{3}\) và có \(a = 9 > 0\)
Ta có bảng xét dấu của \(h\left( x \right)\) như sau:
Vậy \(h\left( x \right)\) luôn dương khi \(x \ne - \frac{2}{3}\)
Bài 1 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc ôn tập chương 3: Hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc hai, bao gồm các yếu tố như hệ số a, b, c, đỉnh của parabol, trục đối xứng, và khoảng đồng biến, nghịch biến để giải quyết các bài toán cụ thể.
Bài 1 thường bao gồm các dạng bài tập sau:
Để giải bài 1 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo, chúng ta cần thực hiện các bước sau:
Giả sử hàm số bậc hai là y = x2 - 4x + 3.
Bước 1: Xác định a = 1, b = -4, c = 3.
Bước 2: Tính delta (Δ) = (-4)2 - 4 * 1 * 3 = 16 - 12 = 4.
Bước 3: Vì Δ > 0, phương trình có hai nghiệm phân biệt.
Bước 4: Tính tọa độ đỉnh: xđỉnh = -(-4) / (2 * 1) = 2, yđỉnh = -4 / (4 * 1) = -1.
Bước 5: Trục đối xứng: x = 2.
Bước 6: Hàm số đồng biến trên khoảng (2, +∞) và nghịch biến trên khoảng (-∞, 2).
Để giải nhanh các bài tập về hàm số bậc hai, bạn nên:
Hàm số bậc hai có nhiều ứng dụng trong thực tế, chẳng hạn như:
Bài 1 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc hai. Hy vọng với lời giải chi tiết và các mẹo giải nhanh trên đây, bạn sẽ tự tin hơn khi giải bài tập này.