Logo Header
  1. Môn Toán
  2. Giải bài 1 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo

Giải bài 1 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo

Giải bài 1 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 1 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong môn Toán.

Xét dấu của các tam thức bậc hai sau

Đề bài

Xét dấu của các tam thức bậc hai sau:

a) \(f\left( x \right) = 6{x^2} + 41x + 44\)

b) \(g\left( x \right) = - 3{x^2} + x - 1\)

c) \(h\left( x \right) = 9{x^2} + 12x + 4\)

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo 1

Bước 1: Tính và xác định dấu của biệt thức \(\Delta = {b^2} - 4ac\)

Bước 2: Xác định nghiệm của \(f\left( x \right)\)nếu có

Bước 3: Các định dấu của hệ số a

Bước 4: Xác định dấu của \(f\left( x \right)\)

Lời giải chi tiết

a) \(f\left( x \right) = 6{x^2} + 41x + 44\) có \(\Delta = 625 > 0\), có hai nghiệm phân biệt là \({x_1} = - \frac{{11}}{2},{x_2} = - \frac{4}{3}\) và có \(a = 6 > 0\)

Ta có bảng xét dấu \(f\left( x \right)\)như sau:

Giải bài 1 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo 2

Vậy \(f\left( x \right)\) dương trong khoảng \(\left( { - \infty ; - \frac{{11}}{2}} \right) \cup \left( { - \frac{4}{3}; + \infty } \right)\) và âm trong khoảng \(\left( { - \frac{{11}}{2}; - \frac{4}{3}} \right)\)

b) \(g\left( x \right) = - 3{x^2} + x - 1\) có \(\Delta = - 11 < 0\) và có \(a = - 3 < 0\)

Ta có bảng xét dấu như sau

Giải bài 1 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo 3

Vậy \(g\left( x \right)\)luôn âm với mọi \(x \in \mathbb{R}\)

c) \(h\left( x \right) = 9{x^2} + 12x + 4\) có \(\Delta = 0\), có nghiệm kép là \({x_1} = {x_2} = - \frac{2}{3}\) và có \(a = 9 > 0\)

Ta có bảng xét dấu của \(h\left( x \right)\) như sau:

Giải bài 1 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo 4

Vậy \(h\left( x \right)\) luôn dương khi \(x \ne - \frac{2}{3}\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 1 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo đặc sắc thuộc chuyên mục toán lớp 10 trên nền tảng môn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 1 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo: Tổng quan

Bài 1 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc ôn tập chương 3: Hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc hai, bao gồm các yếu tố như hệ số a, b, c, đỉnh của parabol, trục đối xứng, và khoảng đồng biến, nghịch biến để giải quyết các bài toán cụ thể.

Nội dung bài tập

Bài 1 thường bao gồm các dạng bài tập sau:

  • Xác định hệ số a, b, c của hàm số bậc hai.
  • Tìm tọa độ đỉnh của parabol.
  • Xác định trục đối xứng của parabol.
  • Tìm khoảng đồng biến, nghịch biến của hàm số.
  • Vẽ đồ thị hàm số bậc hai.
  • Giải các bài toán ứng dụng liên quan đến hàm số bậc hai.

Lời giải chi tiết bài 1 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo

Để giải bài 1 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo, chúng ta cần thực hiện các bước sau:

  1. Bước 1: Xác định hàm số bậc hai.
  2. Bước 2: Xác định hệ số a, b, c.
  3. Bước 3: Tính delta (Δ) = b2 - 4ac.
  4. Bước 4: Xác định số nghiệm của phương trình bậc hai dựa vào giá trị của delta:
    • Nếu Δ > 0: Phương trình có hai nghiệm phân biệt.
    • Nếu Δ = 0: Phương trình có nghiệm kép.
    • Nếu Δ < 0: Phương trình vô nghiệm.
  5. Bước 5: Tính tọa độ đỉnh của parabol: xđỉnh = -b / 2a, yđỉnh = -Δ / 4a.
  6. Bước 6: Xác định trục đối xứng của parabol: x = xđỉnh.
  7. Bước 7: Xác định khoảng đồng biến, nghịch biến của hàm số.
  8. Bước 8: Vẽ đồ thị hàm số.

Ví dụ minh họa

Giả sử hàm số bậc hai là y = x2 - 4x + 3.

Bước 1: Xác định a = 1, b = -4, c = 3.

Bước 2: Tính delta (Δ) = (-4)2 - 4 * 1 * 3 = 16 - 12 = 4.

Bước 3: Vì Δ > 0, phương trình có hai nghiệm phân biệt.

Bước 4: Tính tọa độ đỉnh: xđỉnh = -(-4) / (2 * 1) = 2, yđỉnh = -4 / (4 * 1) = -1.

Bước 5: Trục đối xứng: x = 2.

Bước 6: Hàm số đồng biến trên khoảng (2, +∞) và nghịch biến trên khoảng (-∞, 2).

Mẹo giải nhanh

Để giải nhanh các bài tập về hàm số bậc hai, bạn nên:

  • Nắm vững các công thức tính toán.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính bỏ túi để tính toán nhanh chóng và chính xác.
  • Vẽ đồ thị hàm số để hình dung rõ hơn về tính chất của hàm số.

Ứng dụng của hàm số bậc hai

Hàm số bậc hai có nhiều ứng dụng trong thực tế, chẳng hạn như:

  • Tính quỹ đạo của vật ném.
  • Tính diện tích của các hình học.
  • Giải các bài toán tối ưu hóa.

Tổng kết

Bài 1 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc hai. Hy vọng với lời giải chi tiết và các mẹo giải nhanh trên đây, bạn sẽ tự tin hơn khi giải bài tập này.

Tài liệu, đề thi và đáp án Toán 10