Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 6 trang 48 SGK Toán 10 tập 1 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc học Toán đôi khi có thể gặp nhiều khó khăn. Vì vậy, chúng tôi luôn cố gắng cung cấp những giải pháp tốt nhất để giúp bạn nắm vững kiến thức và tự tin hơn trong học tập.
Một hãng taxi có bảng giá như sau: a) Xem số tiền đi taxi là một hàm số phụ thuộc số kilomet di chuyển, hãy viết công thức của các hàm số dựa trên thông tin từ bảng giá đã cho theo từng yêu cầu:
Đề bài
Một hãng taxi có bảng giá như sau:
Giá mở cửa (0,5 km) | Giá cước các kilomet tiếp theo | Giá cước từ kilomet thứ 31 | |
Taxi 4 chỗ | 11 000 đồng | 14 500 đồng | 11 600 đồng |
Taxi 7 chỗ | 11 000 đồng | 15 500 đồng | 13 600 đồng |
a) Xem số tiền đi taxi là một hàm số phụ thuộc số kilomet di chuyển, hãy viết công thức của các hàm số dựa trên thông tin từ bảng giá đã cho theo từng yêu cầu:
i) Hàm số \(f(x)\) để tính số tiền hành khách phải trả khi di chuyển \(x\) km bằng xe taxi 4 chỗ.
ii) Hàm số \(g(x)\) để tính số tiền hành khách phải trả khi di chuyển \(x\) km bằng xe taxi 7 chỗ.
b) Nếu cần đặt xe taxi cho 30 hành khách, nên đặt toàn bộ xe 4 chỗ hay xe 7 chỗ thì có lợi hơn?
Phương pháp giải - Xem chi tiết
a) Viết công thức tính tiền trong mỗi trường hợp (theo số km), từ đó suy ra hàm số nhiều công thức tương ứng.
b) Tính số tiền phải trả trong mỗi trường hợp, từ đó đưa ra lời khuyên về chọn xe.
Lời giải chi tiết
Gọi x là số kilomet mà hành khách di chuyển \((x \ge 0)\)
a)
i) Khi đã lên taxi 4 chỗ, hành khách luôn phải trả 11 000 đồng dù đi hay không, do đó số tiền phải trả luôn bao gồm 11 000 đồng này.
Nếu \(0 \le x \le 0,5\), số tiền phải trả là 11 000 đồng
Nếu \(0,5 < x \le 30\) thì số tiền phải trả là \(11000 + 14500.(x - 0,5)\) hay \(3750 + 14500x\) (đồng).
Nếu \(x > 30\) thì số tiền phải trả là \(11000 + 14500.(30 - 0,5) + 11600.(x - 30)\) hay \(90750 + 11600x\) (đồng).
Vậy hàm số \(f(x) = \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}11000\quad \quad \quad \quad \quad \quad \;0 \le x \le 0,5\quad \\3750 + 14500x\quad \quad \quad 0,5 < x \le 30\end{array}\\{90750 + 11600x\quad \quad \;x > 30}\end{array}} \right.\quad \)
ii)
Khi đã lên taxi 7 chỗ, hành khách luôn phải trả 11 000 đồng dù đi hay không, do đó số tiền phải trả luôn bao gồm 11 000 đồng này.
Nếu \(0 \le x \le 0,5\), số tiền phải trả là 11 000 đồng
Nếu \(0,5 < x \le 30\) thì số tiền phải trả là \(11000 + 15500.(x - 0,5)\) hay \(3250 + 15500x\) (đồng).
Nếu \(x > 30\) thì số tiền phải trả là \(11000 + 15500.(30 - 0,5) + 13600.(x - 30)\) hay \(60250 + 13600x\) (đồng).
Vậy hàm số \(g(x) = \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}11000\quad \quad \quad \quad \quad \quad \;0 \le x \le 0,5\quad \\3250 + 15500x\quad \quad \quad 0,5 < x \le 30\end{array}\\{60250 + 13600x\quad \quad \;x > 30}\end{array}} \right.\quad \)
b)
Nếu đặt toàn bộ xe 4 chỗ cho 30 hành khách thì cần 8 xe. Khi đó số tiền phải trả là:
\({f_1}(x) = \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}8.11000\quad \quad \quad \quad \quad \quad \;\;\;0 \le x \le 0,5\quad \\8.(3750 + 14500x)\quad \quad \quad 0,5 < x \le 30\end{array}\\{8.(90750 + 11600x)\;\quad \quad \;x > 30}\end{array}} \right.\quad \)
Nếu đặt toàn bộ xe 7 chỗ cho 30 hành khách thì cần 5 xe. Khi đó số tiền phải trả là:
\({g_1}(x) = \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}5.11000\quad \quad \quad \quad \;\;\quad \quad \;0 \le x \le 0,5\quad \\5.(3250 + 15500x)\quad \quad \quad 0,5 < x \le 30\end{array}\\{5.(60250 + 13600x)\quad \quad \;\;x > 30}\end{array}} \right.\quad \)
So sánh số tiền dựa theo số kilomet di chuyển:
+) Nếu \(0 \le x \le 0,5\)
\(\begin{array}{l}{f_1}(x) = 8.11000;\;{g_1}(x) = 5.11000\\ \Rightarrow {f_1}(x) > {g_1}(x)\end{array}\)
Vậy khi 30 người di chuyển quảng đường ít hơn hoặc bằng 0,5km thì đi xe 7 chỗ sẽ tốn ít tiền hơn.
+) Nếu \(0,5 < x \le 30\)
\(\begin{array}{l}{f_1}(x) = 8.(3750 + 14500x);\;{g_1}(x) = 5.(3250 + 15500x)\\ \Rightarrow {f_1}(x) - {g_1}(x) = 8.(3750 + 14500x) - 5.(3250 + 15500x)\\ = 13750 + 38500x\end{array}\)
Vì \(x > 0\) nên \({f_1}(x) - {g_1}(x) > 0\) hay \({f_1}(x) > {g_1}(x)\)
Vậy khi 30 người di chuyển quảng đường trên 0,5km đến 30km thì đi xe 7 chỗ sẽ tốn ít tiền hơn.
+) Nếu \(x > 30\)
\(\begin{array}{l}{f_1}(x) = 8.(90750 + 11600x);\;{g_1}(x) = 5.(60250 + 13600x)\\ \Rightarrow {f_1}(x) - {g_1}(x) = 8.(90750 + 11600x) - 5.(60250 + 13600x)\\ = 424750 + 24800x\end{array}\)
Vì \(x > 0\) nên \({f_1}(x) - {g_1}(x) > 0\) hay \({f_1}(x) > {g_1}(x)\)
Vậy khi 30 người di chuyển quảng đường trên 30km thì đi xe 7 chỗ sẽ tốn ít tiền hơn.
Kết luận: Nên đặt toàn bộ xe 7 chỗ thì có lợi hơn.
Bài 6 trang 48 SGK Toán 10 tập 1 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về tập hợp, các phép toán trên tập hợp, và các tính chất của tập hợp để giải quyết các bài toán cụ thể. Bài tập này thường yêu cầu học sinh xác định các tập hợp, tìm phần tử thuộc tập hợp, thực hiện các phép hợp, giao, hiệu, bù của các tập hợp, và chứng minh các đẳng thức liên quan đến tập hợp.
Bài 6 thường bao gồm một số câu hỏi nhỏ, mỗi câu hỏi yêu cầu học sinh thực hiện một thao tác cụ thể trên tập hợp. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về tập hợp, bao gồm:
Để giúp bạn hiểu rõ hơn về cách giải bài 6 trang 48 SGK Toán 10 tập 1 – Chân trời sáng tạo, chúng tôi sẽ cung cấp một ví dụ minh họa:
Cho hai tập hợp A = {1, 2, 3, 4} và B = {3, 4, 5, 6}. Hãy tìm:
Giải:
Ngoài các bài tập về phép toán trên tập hợp, bài 6 trang 48 SGK Toán 10 tập 1 – Chân trời sáng tạo còn có thể xuất hiện các dạng bài tập sau:
Để giải bài tập về tập hợp một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:
Bài 6 trang 48 SGK Toán 10 tập 1 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về tập hợp và các phép toán trên tập hợp. Hy vọng rằng với hướng dẫn chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong việc giải quyết bài tập này và đạt kết quả tốt trong môn Toán 10.