Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 9 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.
Cho tam giác ABC có góc B nhọn, AD và CE là hai đường cao.
Đề bài
Cho tam giác ABC có góc B nhọn, AD và CE là hai đường cao.
a) Chứng minh \(\frac{{{S_{BDE}}}}{{{S_{BAC}}}} = \frac{{BD.BE}}{{BA.BC}}.\)
b) Biết rằng \({S_{ABC}} = 9{S_{BDE}}\) và \(DE = 2\sqrt 2 .\) Tính \(\cos B\) và bán kính đường tròn ngoại tiếp tam giác ABC.
Phương pháp giải - Xem chi tiết
a) Tính diện tích bằng công thức \(S = \frac{1}{2}ac.\sin B\)
b) \(\cos B = \frac{{BD}}{{BA}} = \frac{{BE}}{{BC}}\)
Lời giải chi tiết
a) Áp dụng công thức \(S = \frac{1}{2}ac.\sin B\) cho tam giác ABC và BED, ta có:
\({S_{ABC}} = \frac{1}{2}.BA.BC.\sin B;{S_{BED}} = \frac{1}{2}..BE.BD.\sin B\)
\( \Rightarrow \frac{{{S_{BED}}}}{{{S_{ABC}}}} = \frac{{\frac{1}{2}.BE.BD.\sin B}}{{\frac{1}{2}.BA.BC.\sin B}} = \frac{{BE.BD}}{{BA.BC}}\)
b) Ta có: \(\cos B = \frac{{BD}}{{BA}} = \frac{{BE}}{{BC}}\)
Mà \(\frac{{{S_{BED}}}}{{{S_{ABC}}}} = \frac{1}{9} \Rightarrow \frac{{BD}}{{BA}}.\frac{{BE}}{{BC}} = \frac{1}{9}\)
\( \Rightarrow \cos B = \frac{{BD}}{{BA}} = \frac{{BE}}{{BC}} = \frac{1}{3}\)
+) Xét tam giác ABC và tam giác DEB ta có:
\(\frac{{BE}}{{BC}} = \frac{{BD}}{{BA}} = \frac{1}{3}\) và góc B chung
\( \Rightarrow \Delta ABC \sim \Delta DEB\) (cgc)
\( \Rightarrow \frac{{DE}}{{AC}} = \frac{1}{3} \Rightarrow AC = 3.DE = 3.2\sqrt 2 = 6\sqrt 2 .\)
Ta có: \(\cos B = \frac{1}{3} \Rightarrow \sin B = \sqrt {1 - {{\left( {\frac{1}{3}} \right)}^2}} = \frac{{2\sqrt 2 }}{3}\) (do B là góc nhọn)
Áp dụng định lí sin trong tam giác ABC ta có:
\(\frac{{AC}}{{\sin B}} = 2R \Rightarrow R = \frac{{6\sqrt 2 }}{{\frac{{2\sqrt 2 }}{3}}}:2 = \frac{9}{2}\)
Bài 9 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc ứng dụng kiến thức về vectơ trong hình học. Bài tập này yêu cầu học sinh vận dụng các định lý, tính chất của vectơ để giải quyết các bài toán liên quan đến hình học phẳng. Việc nắm vững kiến thức nền tảng và kỹ năng giải toán là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.
Bài 9 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào giải chi tiết từng phần của bài 9. (Nội dung giải chi tiết sẽ được trình bày ở đây, bao gồm các bước giải, giải thích rõ ràng và minh họa bằng hình vẽ nếu cần thiết. Ví dụ:)
Cho tam giác ABC, với A(1;2), B(3;4), C(5;0). Tìm tọa độ điểm D sao cho ABCD là hình bình hành.
Giải:
Để giải các bài tập về vectơ một cách hiệu quả, bạn nên:
Để củng cố kiến thức, bạn có thể thử giải các bài tập tương tự sau:
Bài 9 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo là một bài tập quan trọng giúp bạn rèn luyện kỹ năng vận dụng kiến thức về vectơ vào giải quyết các bài toán hình học. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong quá trình học tập môn Toán.
Hãy tiếp tục luyện tập và khám phá thêm nhiều bài tập thú vị khác tại giaitoan.edu.vn!