Logo Header
  1. Môn Toán
  2. Giải bài 7 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 7 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 7 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10 tập 1 Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn giải bài 7 trang 27 một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.

a) Hãy viết tất cả các tập hợp con của tập hợp A = { a;b;c} b) Tìm tất cả các tập hợp B thỏa mãn điều kiện

Đề bài

a) Hãy viết tất cả các tập hợp con của tập hợp \(A = \{ a;b;c\} \)

b) Tìm tất cả các tập hợp B thỏa mãn điều kiện \(\{ a;b\} \subset B \subset \{ a;b;c;d\} \)

Phương pháp giải - Xem chi tiếtGiải bài 7 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo 1

\(B \subset A\) nếu mọi phần tử của B cũng là phần tử của A.

Lời giải chi tiết

a) Các tập hợp con của tập hợp \(A = \{ a;b;c\} \)gồm:

+) Tập rỗng: \(\emptyset \)

+) Tập con có 1 phần tử: \(\{ a\} ,\{ b\} ,\{ c\} .\)

+) Tập con có 2 phần tử: \(\{ a;b\} ,\{ b;c\} ,\{ c;a\} .\)

+) Tập hợp A.

b) Tập hợp B thỏa mãn \(\{ a;b\} \subset B \subset \{ a;b;c;d\} \)là:

+) \(B = \{ a;b\} \)

+) \(B = \{ a;b;c\} \)

+) \(B = \{ a;b;d\} \)

+) \(B = \{ a;b;c;d\} \)

Chú ý

Mọi tập hợp A luôn có hai tập con là \(\emptyset \) và A.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 7 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo đặc sắc thuộc chuyên mục giải toán 10 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 7 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo: Tổng quan

Bài 7 trang 27 SGK Toán 10 tập 1 Chân trời sáng tạo thuộc chương 1: Mệnh đề và tập hợp. Bài tập này yêu cầu học sinh vận dụng kiến thức về các phép toán trên tập hợp, bao gồm hợp, giao, hiệu và phần bù của tập hợp để giải quyết các bài toán cụ thể. Việc nắm vững các khái niệm và quy tắc này là nền tảng quan trọng để học tốt các chương tiếp theo của môn Toán 10.

Nội dung bài tập

Bài 7 trang 27 SGK Toán 10 tập 1 Chân trời sáng tạo thường bao gồm các dạng bài tập sau:

  • Xác định các tập hợp: Cho các tập hợp A, B, C, yêu cầu xác định các tập hợp A ∪ B, A ∩ B, A \ B, Cc (phần bù của C).
  • Chứng minh đẳng thức tập hợp: Chứng minh các đẳng thức liên quan đến các phép toán trên tập hợp, ví dụ: A ∪ B = B ∪ A.
  • Giải bài toán thực tế: Áp dụng kiến thức về tập hợp để giải quyết các bài toán liên quan đến cuộc sống hàng ngày.

Lời giải chi tiết bài 7 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài 7 trang 27 SGK Toán 10 tập 1 Chân trời sáng tạo.

Ví dụ 1: Xác định các tập hợp

Cho A = {1, 2, 3, 4}, B = {3, 4, 5, 6}. Hãy xác định:

  • A ∪ B
  • A ∩ B
  • A \ B

Lời giải:

  • A ∪ B = {1, 2, 3, 4, 5, 6} (hợp của A và B là tập hợp chứa tất cả các phần tử thuộc A hoặc B)
  • A ∩ B = {3, 4} (giao của A và B là tập hợp chứa tất cả các phần tử thuộc cả A và B)
  • A \ B = {1, 2} (hiệu của A và B là tập hợp chứa tất cả các phần tử thuộc A nhưng không thuộc B)

Ví dụ 2: Chứng minh đẳng thức tập hợp

Chứng minh rằng A ∪ B = B ∪ A với mọi tập hợp A và B.

Lời giải:

Để chứng minh A ∪ B = B ∪ A, ta cần chứng minh rằng mọi phần tử thuộc A ∪ B đều thuộc B ∪ A và ngược lại.

Giả sử x ∈ A ∪ B. Điều này có nghĩa là x ∈ A hoặc x ∈ B. Nếu x ∈ A thì x ∈ B ∪ A. Nếu x ∈ B thì x ∈ B ∪ A. Vậy, x ∈ B ∪ A. Do đó, A ∪ B ⊆ B ∪ A.

Tương tự, nếu x ∈ B ∪ A thì x ∈ B hoặc x ∈ A. Nếu x ∈ B thì x ∈ A ∪ B. Nếu x ∈ A thì x ∈ A ∪ B. Vậy, x ∈ A ∪ B. Do đó, B ∪ A ⊆ A ∪ B.

Từ A ∪ B ⊆ B ∪ A và B ∪ A ⊆ A ∪ B, ta suy ra A ∪ B = B ∪ A.

Mẹo giải bài tập về tập hợp

Để giải tốt các bài tập về tập hợp, bạn nên:

  • Nắm vững các định nghĩa và tính chất của các phép toán trên tập hợp.
  • Sử dụng sơ đồ Venn để minh họa các tập hợp và các phép toán trên chúng.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.

Tài liệu tham khảo

Ngoài SGK Toán 10 tập 1 Chân trời sáng tạo, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách bài tập Toán 10
  • Các trang web học toán online uy tín
  • Các video hướng dẫn giải bài tập Toán 10

Kết luận

Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 7 trang 27 SGK Toán 10 tập 1 Chân trời sáng tạo. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 10