Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 10 tập 1 của giaitoan.edu.vn. Ở bài viết này, chúng tôi sẽ cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong mục 2 trang 34 và 35 sách giáo khoa Toán 10 tập 1, chương trình Chân trời sáng tạo.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải toán và tự tin hơn trong quá trình học tập.
Miền nào trong Hình 1 biểu diễn phần giao các miền nghiệm của hai bất phương trình trong hệ đã cho? Biểu diễn miền nghiệm của hệ bất phương trình:
Cho hệ bất phương trình: \(\left\{ \begin{array}{l}x + y - 3 \le 0\\ - 2x + y + 3 \ge 0\end{array} \right.\)
Miền nào trong Hình 1 biểu diễn phần giao các miền nghiệm của hai bất phương trình trong hệ đã cho?
Phương pháp giải:
Biểu diễn từng miền nghiệm của mỗi bất phương trình trên cùng một mặt phẳng Oxy
Lời giải chi tiết:
Vẽ đường thẳng \(d:x + y - 3 = 0\) đi qua hai điểm \(A(0;3)\) và \(B\left( {1;2} \right)\)
Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \(0 + 0 - 3 = - 3 < 0\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng kể cả bờ \(d\), chứa gốc tọa độ O
(miền không gạch chéo trên hình)
Vẽ đường thẳng \(d': - 2x + y + 3 = 0\) đi qua hai điểm \(A(1; - 1)\) và \(B\left( {2;1} \right)\)
Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \( - 2.0 + 0 + 3 = 3 > 0\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(d'\), chứa gốc tọa độ O
(miền không gạch chéo trên hình)
Vậy miền không gạch chéo trong hình trên là miền nghiệm của hệ bất phương trình đã cho.
Biểu diễn miền nghiệm của hệ bất phương trình: \(\left\{ \begin{array}{l}x + y \le 8\\2x + 3y \le 18\\x \ge 0\\y \ge 0\end{array} \right.\)
Phương pháp giải:
Biểu diễn từng miền nghiệm của mỗi bất phương trình trên cùng một mặt phẳng Oxy
Lời giải chi tiết:
Biểu diễn từng miền nghiệm của mỗi bất phương trình trên mặt phẳng Oxy.
Miền không gạch chéo (miền tứ giác OABC, bao gồm cả các cạnh) trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn nghiệm của hệ bất phương trình đã cho.
Cho hệ bất phương trình: \(\left\{ \begin{array}{l}x + y - 3 \le 0\\ - 2x + y + 3 \ge 0\end{array} \right.\)
Miền nào trong Hình 1 biểu diễn phần giao các miền nghiệm của hai bất phương trình trong hệ đã cho?
Phương pháp giải:
Biểu diễn từng miền nghiệm của mỗi bất phương trình trên cùng một mặt phẳng Oxy
Lời giải chi tiết:
Vẽ đường thẳng \(d:x + y - 3 = 0\) đi qua hai điểm \(A(0;3)\) và \(B\left( {1;2} \right)\)
Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \(0 + 0 - 3 = - 3 < 0\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng kể cả bờ \(d\), chứa gốc tọa độ O
(miền không gạch chéo trên hình)
Vẽ đường thẳng \(d': - 2x + y + 3 = 0\) đi qua hai điểm \(A(1; - 1)\) và \(B\left( {2;1} \right)\)
Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \( - 2.0 + 0 + 3 = 3 > 0\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(d'\), chứa gốc tọa độ O
(miền không gạch chéo trên hình)
Vậy miền không gạch chéo trong hình trên là miền nghiệm của hệ bất phương trình đã cho.
Biểu diễn miền nghiệm của hệ bất phương trình: \(\left\{ \begin{array}{l}x + y \le 8\\2x + 3y \le 18\\x \ge 0\\y \ge 0\end{array} \right.\)
Phương pháp giải:
Biểu diễn từng miền nghiệm của mỗi bất phương trình trên cùng một mặt phẳng Oxy
Lời giải chi tiết:
Biểu diễn từng miền nghiệm của mỗi bất phương trình trên mặt phẳng Oxy.
Miền không gạch chéo (miền tứ giác OABC, bao gồm cả các cạnh) trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn nghiệm của hệ bất phương trình đã cho.
Mục 2 của chương trình Toán 10 tập 1, Chân trời sáng tạo tập trung vào các khái niệm cơ bản về tập hợp, các phép toán trên tập hợp và các tính chất của chúng. Việc nắm vững kiến thức này là nền tảng quan trọng để học tốt các chương trình Toán học ở các lớp trên.
Chúng ta sẽ cùng nhau đi qua từng bài tập trong mục 2 trang 34 và 35 SGK Toán 10 tập 1, Chân trời sáng tạo, phân tích đề bài, tìm ra phương pháp giải phù hợp và trình bày lời giải chi tiết.
Bài tập này yêu cầu học sinh xác định các phần tử thuộc một tập hợp cho trước. Để giải bài tập này, học sinh cần hiểu rõ định nghĩa của tập hợp và cách xác định các phần tử của tập hợp.
Ví dụ: Cho tập hợp A = {x | x là số tự nhiên nhỏ hơn 10}. Hãy liệt kê các phần tử của tập hợp A.
Lời giải: A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Bài tập này yêu cầu học sinh xác định các tập hợp con của một tập hợp cho trước. Để giải bài tập này, học sinh cần hiểu rõ định nghĩa của tập hợp con.
Ví dụ: Cho tập hợp B = {a, b, c}. Hãy liệt kê tất cả các tập hợp con của tập hợp B.
Lời giải: Các tập hợp con của B là: {}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}
Bài tập này yêu cầu học sinh thực hiện các phép toán trên tập hợp như hợp, giao, hiệu và phần bù. Để giải bài tập này, học sinh cần hiểu rõ định nghĩa và tính chất của các phép toán trên tập hợp.
Ví dụ: Cho tập hợp C = {1, 2, 3} và D = {2, 4, 5}. Hãy tìm tập hợp C ∪ D (hợp của C và D).
Lời giải: C ∪ D = {1, 2, 3, 4, 5}
Bài tập này yêu cầu học sinh vận dụng kiến thức về tập hợp để giải các bài toán thực tế. Để giải bài tập này, học sinh cần phân tích đề bài, xác định các tập hợp liên quan và sử dụng các phép toán trên tập hợp để tìm ra lời giải.
Ngoài sách giáo khoa, các em có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 10:
Hy vọng rằng với lời giải chi tiết và những lời khuyên trên, các em học sinh sẽ tự tin hơn khi giải các bài tập trong mục 2 trang 34, 35 SGK Toán 10 tập 1, Chân trời sáng tạo. Chúc các em học tập tốt!