Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 3 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Dựa vào đồ thị của hàm số bậc hai được cho, hãy giải các bất phương trình sau
Đề bài
Dựa vào đồ thị của hàm số bậc hai được cho, hãy giải các bất phương trình sau:
Phương pháp giải - Xem chi tiết
Quan sát vào đồ thị ta thấy
+) Tại giao điểm của đồ thị và trục hoành là nghiệm của \(f\left( x \right) = 0\)
+) Khoảng của x mà phần độ thị nằm trên trục hoành là nghiệm của \(f\left( x \right) > 0\)
+) Khoảng của x mà phần độ thị nằm dưới trục hoành là nghiệm của \(f\left( x \right) < 0\)
Lời giải chi tiết
a) Quan sát vào độ thị ta thấy đoạn mà đồ thị nằm dưới truch hoành là \(\left[ { - 2;\frac{5}{2}} \right]\)
Vậy nghiệm của bất phương trình \({x^2} - 0,5x - 5 \le 0\) là đoạn \(\left[ { - 2;\frac{5}{2}} \right]\)
b) Quan sát vào đồ thị ta thấy đồ thị luôn nằm dưới trục hoành
Vậy nghiệm của bất phương trình \( - 2{x^2} + x - 1 > 0\) vô nghiệm
Bài 3 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.
Bài 3 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ cung cấp lời giải chi tiết cho từng phần của bài 3. Lưu ý rằng, lời giải này chỉ mang tính chất tham khảo, bạn nên tự mình suy nghĩ và giải bài tập trước khi xem lời giải để rèn luyện kỹ năng giải toán.
Cho hai vectơ a = (1; 2) và b = (3; -1). Tìm vectơ c = a + b.
Lời giải:
Vectơ c = a + b = (1 + 3; 2 + (-1)) = (4; 1).
Cho vectơ a = (-2; 4) và số thực k = 3. Tìm vectơ b = ka.
Lời giải:
Vectơ b = ka = 3(-2; 4) = (-6; 12).
Chứng minh rằng với mọi vectơ a, b, c ta có: a + (b - c) = (a + b) - c.
Lời giải:
Ta có: a + (b - c) = a + b + (-c) = a + b - c = (a + b) - c.
Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong việc giải bài 3 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo. Chúc bạn học tập tốt!