Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 10 trang 58 SGK Toán 10 tập 2 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong môn Toán.
Một người đang viết chương trình cho trò chơi đá bóng robot. Gọi A( - 1;1),B(9;6),C(5; - 3) là 3 vị trí trên màn hình a) Viết phương trình các đường thẳng AB, AC, BC b) Tính góc hợp bởi hai đường thẳng AB và AC c) Tính khoảng cách từ điểm A đến đường thẳng BC
Đề bài
Một người đang viết chương trình cho trò chơi đá bóng robot. Gọi A(-1;1), B(9;6), C(5;-3) là ba vị trí trên màn hình.
a) Viết phương trình các đường thẳng AB, AC, BC.
b) Tính góc hợp bởi hai đường thẳng AB và AC.
c) Tính khoảng cách từ điểm A đến đường thẳng BC.
Phương pháp giải - Xem chi tiết
a) Tìm VTPT (hoặc VTCP) => Lập PT tổng quát (hoặc tham số) của đt.
b) Xác định góc giữa hai đường thẳng thông qua cặp VTPT ( hoặc VTCP): \((a_1;b_1), (a_2;b_2)\):
\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2}} \right|}}{{\sqrt {{a_1}^2 + {b_1}^2} \sqrt {{a_2}^2 + {b_2}^2} }}\).
c) Khoảng cách từ \(A(x_0; y_0)\) đến BC: \(a{x_0} + b{y_0} + c=0\) là:
\(d\left( {A,\Delta } \right) = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\).
Lời giải chi tiết
a) Ta có: \(\overrightarrow {AB} = \left( {10;5} \right),\overrightarrow {AC} = \left( {6; - 4} \right),\overrightarrow {BC} = \left( { - 4; - 9} \right)\).
+) Đường thẳng AB nhận vectơ \(\overrightarrow {AB} = \left( {10;5} \right)\) làm phương trình chỉ phương và đi qua điểm \(A( - 1;1)\) nên có phương trình tham số là: \(\left\{ \begin{array}{l}x = - 1 + 10t\\y = 1 + 5t\end{array} \right.\).
+) Đường thẳng AC nhận vectơ \(\overrightarrow {AC} = \left( {6; - 4} \right)\) làm phương trình chỉ phương và đi qua điểm \(A( - 1;1)\) nên có phương trình tham số là: \(\left\{ \begin{array}{l}x = - 1 + 6t\\y = 1 - 4t\end{array} \right.\).
+) Đường thẳng BC nhận vectơ \(\overrightarrow {BC} = \left( { - 4; - 9} \right)\) làm phương trình chỉ phương và đi qua điểm \(B\left( {9;6} \right)\) nên có phương trình tham số là: \(\left\{ \begin{array}{l}x = 9 - 4t\\y = 6 - 9t\end{array} \right.\).
b) Ta có vectơ pháp tuyến của hai đường thẳng AB và AC lần lượt là: \(\overrightarrow {{n_1}} = \left( {1; - 2} \right),\overrightarrow {{n_2}} = \left( {2;3} \right)\).
\(\cos \left( {AB,AC} \right) = \cos \left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right) = \frac{{\left| {1.2 + \left( { - 2} \right).3} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2}} \sqrt {{2^2} + {3^2}} }} = \frac{{4\sqrt {65} }}{{65}} \Rightarrow \left( {AB,AC} \right) = 60^\circ 15'\).
Vậy góc giữa hai đường thẳng AB và AC là \(60^\circ 15'\).
c) Đường thẳng BC nhận vectơ \(\overrightarrow {BC} = \left( { - 4; - 9} \right)\) làm vectơ chỉ phương nên có vectơ pháp tuyến là \(\overrightarrow n = \left( {9; - 4} \right)\) và đi qua \(B\left( {9;6} \right)\), suy ra phương trình tổng quát của đường thẳng BC là:
\(9.\left( {x - 9} \right) - 4\left( {y - 6} \right) = 0 \Leftrightarrow 9x - 4y - 57 = 0\).
Khoảng cách từ \(A( - 1;1)\) đến đường thẳng BC là:
\(d\left( {A,BC} \right) = \frac{{\left| {9.\left( { - 1} \right) - 4.1 - 57} \right|}}{{\sqrt {{9^2} + {{\left( { - 4} \right)}^2}} }} = \frac{{70\sqrt {97} }}{{97}}\).
Bài 10 trang 58 SGK Toán 10 tập 2 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của chúng.
Bài 10 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ cung cấp lời giải chi tiết cho từng phần của bài 10. Lưu ý rằng, lời giải này chỉ mang tính chất tham khảo, bạn nên tự mình suy nghĩ và giải bài tập trước khi xem lời giải để rèn luyện kỹ năng giải toán.
Ví dụ: Cho tam giác ABC, tìm vectơ AB và vectơ AC.
Lời giải: Vectơ AB là vectơ có điểm đầu là A và điểm cuối là B. Vectơ AC là vectơ có điểm đầu là A và điểm cuối là C.
Ví dụ: Cho vectơ a = (1; 2) và vectơ b = (3; 4). Tính vectơ a + b và vectơ 2a.
Lời giải:
Ví dụ: Chứng minh rằng ABCD là hình bình hành khi và chỉ khi vectơ AB = vectơ DC.
Lời giải: Để chứng minh ABCD là hình bình hành, ta cần chứng minh rằng AB song song với DC và AB = DC. Điều này tương đương với việc chứng minh vectơ AB = vectơ DC.
Ví dụ: Cho hình bình hành ABCD, gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh rằng vectơ OA = vectơ OC.
Lời giải: Vì ABCD là hình bình hành, O là giao điểm của hai đường chéo AC và BD, nên O là trung điểm của AC và BD. Do đó, vectơ OA = vectơ OC.
Để giải các bài tập về vectơ một cách hiệu quả, bạn nên:
Ngoài SGK Toán 10 tập 2 – Chân trời sáng tạo, bạn có thể tham khảo thêm các tài liệu sau:
Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong việc giải bài 10 trang 58 SGK Toán 10 tập 2 – Chân trời sáng tạo. Chúc bạn học tập tốt!