Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 101 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 4 trang 101 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 4 trang 101 SGK Toán 10 tập 1 – Chân trời sáng tạo

Chào mừng các em học sinh đến với lời giải chi tiết bài 4 trang 101 SGK Toán 10 tập 1 – Chân trời sáng tạo. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.

Cho đoạn thẳng AB có O là trung điểm và cho điểm M tùy ý. Chứng minh rằng:

Đề bài

Cho đoạn thẳng ABO là trung điểm và cho điểm M tùy ý. Chứng minh rằng:

\(\overrightarrow {MA} .\overrightarrow {MB} = {\overrightarrow {MO} ^2} - {\overrightarrow {OA} ^2}\)

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 101 SGK Toán 10 tập 1 – Chân trời sáng tạo 1

Sử dụng hằng đẳng thức \({a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\) phân tích \({\overrightarrow {MO} ^2} - {\overrightarrow {OA} ^2}\)

Lời giải chi tiết

Giải bài 4 trang 101 SGK Toán 10 tập 1 – Chân trời sáng tạo 2

Ta có: \(\overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow 0 \Leftrightarrow - \overrightarrow {OA} = \overrightarrow {OB} \)

\(\Rightarrow {\overrightarrow {MO} ^2} - {\overrightarrow {OA} ^2} = \left( {\overrightarrow {MO} + \overrightarrow {OA} } \right)\left( {\overrightarrow {MO} - \overrightarrow {OA} } \right) \\= \left( {\overrightarrow {MO} + \overrightarrow {OA} } \right)\left( {\overrightarrow {MO} + \overrightarrow {OB} } \right) = \overrightarrow {MA} .\overrightarrow {MB} \) (đpcm)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 4 trang 101 SGK Toán 10 tập 1 – Chân trời sáng tạo đặc sắc thuộc chuyên mục học toán 10 trên nền tảng toán học. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 4 trang 101 SGK Toán 10 tập 1 – Chân trời sáng tạo: Tổng quan

Bài 4 trang 101 SGK Toán 10 tập 1 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong mặt phẳng để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.

Nội dung bài tập

Bài 4 thường bao gồm các dạng bài tập sau:

  • Tìm vectơ tổng, hiệu của hai vectơ: Yêu cầu học sinh thực hiện phép cộng, trừ vectơ dựa trên tọa độ hoặc biểu diễn hình học.
  • Tìm vectơ tích của một số với vectơ: Yêu cầu học sinh tính tích của một số thực với vectơ, chú ý đến dấu của số thực và sự thay đổi về độ dài của vectơ.
  • Chứng minh đẳng thức vectơ: Yêu cầu học sinh sử dụng các tính chất của phép cộng, phép trừ vectơ, tích của một số với vectơ để chứng minh đẳng thức vectơ.
  • Ứng dụng vectơ vào giải quyết bài toán hình học: Yêu cầu học sinh sử dụng vectơ để chứng minh các tính chất của hình học, chẳng hạn như chứng minh hai đường thẳng song song, vuông góc, hoặc chứng minh một điểm nằm trên một đường thẳng.

Phương pháp giải bài tập

Để giải quyết bài 4 trang 101 SGK Toán 10 tập 1 – Chân trời sáng tạo một cách hiệu quả, học sinh cần:

  1. Nắm vững kiến thức lý thuyết: Hiểu rõ các định nghĩa, tính chất của vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ.
  2. Sử dụng tọa độ vectơ: Chuyển đổi các bài toán hình học sang bài toán đại số bằng cách sử dụng tọa độ vectơ. Điều này giúp việc tính toán trở nên dễ dàng hơn.
  3. Vẽ hình minh họa: Vẽ hình minh họa giúp học sinh hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  4. Kiểm tra lại kết quả: Sau khi giải xong bài tập, học sinh nên kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Ví dụ: Cho hai vectơ a = (2; -1)b = (-1; 3). Tính a + b2a.

Giải:

a + b = (2 + (-1); -1 + 3) = (1; 2)

2a = (2 * 2; 2 * (-1)) = (4; -2)

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, học sinh nên luyện tập thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Việc luyện tập thường xuyên sẽ giúp học sinh nắm vững kiến thức và tự tin hơn khi giải các bài tập khó.

Lời khuyên

Trong quá trình học tập, nếu gặp khó khăn, học sinh nên tìm sự giúp đỡ của giáo viên, bạn bè hoặc tham khảo các nguồn tài liệu trực tuyến. Đừng ngại đặt câu hỏi và trao đổi kiến thức với những người xung quanh. Chúc các em học tập tốt!

Bảng tóm tắt các công thức quan trọng

Công thứcMô tả
a + b = (xa + xb; ya + yb)Phép cộng vectơ
a - b = (xa - xb; ya - yb)Phép trừ vectơ
k * a = (k * xa; k * ya)Tích của một số với vectơ

Tài liệu, đề thi và đáp án Toán 10