Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 73 SGK Toán 10 tập 2 – Chân trời sáng tạo

Giải bài 3 trang 73 SGK Toán 10 tập 2 – Chân trời sáng tạo

Giải bài 3 trang 73 SGK Toán 10 tập 2 – Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 3 trang 73 SGK Toán 10 tập 2 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.

Tìm tọa độ giao điểm và góc giữa hai đường thẳng d1 và d2 trong mỗi trường hợp sau:

Đề bài

Tìm tọa độ giao điểm và góc giữa hai đường thẳng \({d_1}\) và \({d_2}\) trong mỗi trường hợp sau:

a) \({d_1}:x - y + 2 = 0\) và \({d_2}:x + y + 4 = 0\)

b) \({d_1}:\left\{ \begin{array}{l}x = 1 + t\\y = 3 + 2t\end{array} \right.\) và \({d_2}:x - 3y + 2 = 0\)

c) \({d_1}:\left\{ \begin{array}{l}x = 2 - t\\y = 5 + 3t\end{array} \right.\) và \({d_2}:\left\{ \begin{array}{l}x = 1 + 3t'\\y = 3 + t'\end{array} \right.\)

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 73 SGK Toán 10 tập 2 – Chân trời sáng tạo 1

+) Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ phương trình tạo bởi hai phương trình đường thẳng

+) Góc giữa hai đường thẳng được tính bằng công thức \(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2}} \right|}}{{\sqrt {{a_1}^2 + {b_1}^2} .\sqrt {{a_2}^2 + {b_2}^2} }}\) với \(\overrightarrow {{n_1}} = \left( {{a_1};{b_1}} \right),\overrightarrow {{n_2}} = \left( {{a_2};{b_2}} \right)\) lần lượt là vectơ pháp tuyến của đường thẳng \({d_1}\) và \({d_2}\)

Lời giải chi tiết

a) Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:

\(\left\{ \begin{array}{l}x - y + 2 = 0\\x + y + 4 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 3\\y = - 1\end{array} \right.\)

\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {1.1 + ( - 1).1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {1^2}} }} = 0 \Rightarrow {d_1} \bot {d_2}\)

Vậy hai đường thẳng \({d_1}\) và \({d_2}\) vuông góc với nhau tại điểm có tọa độ \(( - 3; - 1)\)

b) Đường thẳng \({d_1}\) có phương trình tổng quát là: \({d_1}:2x - y + 1 = 0\)

Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:

\(\left\{ \begin{array}{l}2x - y + 1 = 0\\x - 3y + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - \frac{1}{5}\\y = \frac{3}{5}\end{array} \right.\)

\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {2.\left( { - 1} \right) + 1.( - 3)} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \left( {{d_1},{d_2}} \right) = 45^\circ \)

Vậy hai đường thẳng \({d_1}\) và \({d_2}\) cắt nhau tại điểm có tọa độ \(\left( { - \frac{1}{5};\frac{3}{5}} \right)\) và góc giữa chúng là \(45^\circ \)

c) Đường thẳng \({d_1}\) và \({d_2}\) lần lượt có phương trình tổng quát là:

\({d_1}:3x + y - 11 = 0,{d_2}:x - 3y + 8 = 0\)

Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:

\(\left\{ \begin{array}{l}3x + y - 11 = 0\\x - 3y + 8 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{5}{2}\\y = \frac{7}{2}\end{array} \right.\)

\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {3.1 + 1.( - 3)} \right|}}{{\sqrt {{3^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = 0 \Rightarrow \left( {{d_1},{d_2}} \right) = 90^\circ \)

Vậy hai đường thẳng \({d_1}\) và \({d_2}\) vuông góc tại điểm có tọa độ \(\left( {\frac{5}{2};\frac{7}{2}} \right)\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 3 trang 73 SGK Toán 10 tập 2 – Chân trời sáng tạo đặc sắc thuộc chuyên mục giải bài tập sgk toán 10 trên nền tảng toán học. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 3 trang 73 SGK Toán 10 tập 2 – Chân trời sáng tạo: Tổng quan

Bài 3 trang 73 SGK Toán 10 tập 2 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và đặc biệt là ứng dụng của vectơ trong việc chứng minh các tính chất hình học.

Nội dung bài tập

Bài 3 trang 73 SGK Toán 10 tập 2 – Chân trời sáng tạo thường bao gồm các dạng bài tập sau:

  • Bài tập 1: Xác định các vectơ trong hình.
  • Bài tập 2: Thực hiện các phép toán vectơ (cộng, trừ, nhân với một số).
  • Bài tập 3: Chứng minh các đẳng thức vectơ.
  • Bài tập 4: Ứng dụng vectơ để chứng minh các tính chất của hình bình hành, hình chữ nhật, hình thoi, hình vuông.

Lời giải chi tiết bài 3 trang 73 SGK Toán 10 tập 2 – Chân trời sáng tạo

Để giải bài 3 trang 73 SGK Toán 10 tập 2 – Chân trời sáng tạo một cách hiệu quả, bạn cần thực hiện theo các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho và kết quả cần tìm.
  2. Vẽ hình: Vẽ hình minh họa bài toán, giúp bạn hình dung rõ hơn về các yếu tố và mối quan hệ giữa chúng.
  3. Chọn hệ tọa độ: Chọn một hệ tọa độ thích hợp để biểu diễn các điểm và vectơ trong không gian.
  4. Biểu diễn các vectơ: Biểu diễn các vectơ bằng tọa độ trong hệ tọa độ đã chọn.
  5. Thực hiện các phép toán vectơ: Sử dụng các công thức và quy tắc về phép cộng, phép trừ vectơ, tích của một số với vectơ để tính toán.
  6. Kiểm tra kết quả: Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Bài toán: Cho hình bình hành ABCD. Gọi M là trung điểm của cạnh BC. Chứng minh rằng vectơ AM = (1/2) * (vectơ AB + vectơ AD).

Lời giải:

Ta có: vectơ AM = vectơ AB + vectơ BM.

Vì M là trung điểm của BC nên vectơ BM = (1/2) * vectơ BC.

Mà vectơ BC = vectơ AD (do ABCD là hình bình hành).

Do đó, vectơ AM = vectơ AB + (1/2) * vectơ AD.

Mẹo giải bài tập vectơ

  • Nắm vững các định nghĩa và tính chất của vectơ.
  • Thành thạo các phép toán vectơ.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng hình vẽ để hỗ trợ quá trình giải toán.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo

Để học tập và ôn luyện môn Toán 10 hiệu quả, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 10 tập 2 – Chân trời sáng tạo.
  • Sách bài tập Toán 10 tập 2 – Chân trời sáng tạo.
  • Các trang web học toán online uy tín như giaitoan.edu.vn.
  • Các video bài giảng Toán 10 trên YouTube.

Kết luận

Bài 3 trang 73 SGK Toán 10 tập 2 – Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về vectơ và ứng dụng của vectơ trong hình học. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 10