Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài 9 trang 45 SGK Toán 10 tập 2 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.
Tính góc giữa hai vectơ a và b trong các trường hợp sau
Đề bài
Tính góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \)trong các trường hợp sau
a) \(\overrightarrow a = (2; - 3),\overrightarrow b = (6;4)\)
b) \(\overrightarrow a = (3;2),\overrightarrow b = (5; - 1)\)
c) \(\overrightarrow a = ( - 2; - 2\sqrt 3 ),\overrightarrow b = (3;\sqrt 3 )\)
Phương pháp giải - Xem chi tiết
+) \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\)
+) \(\overrightarrow a .\overrightarrow b = x_a.x_b +y_a.y_b\)
+) \(|\overrightarrow a | = \sqrt {{x_a}^2 +{y_a}^2}\)
Lời giải chi tiết
a) \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{2.6 + ( - 3).4}}{{\sqrt {{2^2} + {{\left( { - 3} \right)}^2}} .\sqrt {{6^2} + {4^2}} }} = 0 \Rightarrow \overrightarrow a \bot \overrightarrow b \)
b) \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{3.5 + 2.( - 1)}}{{\sqrt {{3^2} + {2^2}} .\sqrt {{5^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 45^\circ \)
c) \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{\left( { - 2} \right).3 + ( - 2\sqrt 3 ).\sqrt 3 }}{{\sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 2\sqrt 3 } \right)}^2}} .\sqrt {{3^2} + {{\sqrt 3 }^2}} }} = - \frac{{\sqrt 3 }}{2} \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 150^\circ \)
Bài 9 trang 45 SGK Toán 10 tập 2 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc ứng dụng kiến thức về vectơ trong hình học. Bài tập này yêu cầu học sinh vận dụng các định lý, tính chất của vectơ để giải quyết các bài toán liên quan đến hình học phẳng. Việc nắm vững kiến thức nền tảng và kỹ năng giải toán là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.
Bài 9 trang 45 SGK Toán 10 tập 2 – Chân trời sáng tạo thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài tập. Lưu ý rằng, lời giải này chỉ mang tính chất tham khảo, bạn nên tự mình suy nghĩ và giải bài tập trước khi xem lời giải để rèn luyện kỹ năng giải toán.
Ví dụ: Cho tam giác ABC. Xác định các vectơ:
Ví dụ: Cho a = (1; 2) và b = (3; -1). Tính a + b và 2a.
a + b = (1 + 3; 2 + (-1)) = (4; 1)
2a = (2 * 1; 2 * 2) = (2; 4)
Ví dụ: Chứng minh rằng AB + BC = AC.
Để chứng minh đẳng thức này, ta cần sử dụng quy tắc cộng vectơ. Theo quy tắc cộng vectơ, nếu điểm B nằm giữa A và C thì AB + BC = AC.
Ví dụ: Cho tam giác ABC, M là trung điểm của BC. Chứng minh rằng AM = (AB + AC) / 2.
Ta có: AM = AB + BM. Vì M là trung điểm của BC nên BM = (1/2)BC. Do đó, AM = AB + (1/2)BC. Mặt khác, BC = AC - AB. Thay vào phương trình trên, ta được AM = AB + (1/2)(AC - AB) = (AB + AC) / 2.
Bài 9 trang 45 SGK Toán 10 tập 2 – Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về vectơ và ứng dụng vào giải quyết các bài toán hình học. Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong quá trình học tập môn Toán.