Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 4 trang 56 SGK Toán 10 tập 1 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc học Toán đôi khi có thể gặp nhiều khó khăn. Vì vậy, chúng tôi luôn cố gắng cung cấp những giải pháp tốt nhất để giúp bạn vượt qua những thách thức đó.
Cho hàm số bậc hai y = f(x) = ax^2 + bx + c có f(0) = 1,f(1) = 2,f(2) = 5. a) Hãy xác định giá trị của các hệ số a,b và c b) Xác định tập giá trị và khoảng biến thiên của hàm số.
Đề bài
Cho hàm số bậc hai \(y = f(x) = a{x^2} + bx + c\) có \(f(0) = 1,f(1) = 2,f(2) = 5.\)
a) Hãy xác định giá trị của các hệ số \(a,b\) và \(c.\)
b) Xác định tập giá trị và khoảng biến thiên của hàm số.
Phương pháp giải - Xem chi tiết
a) \(f(0) = a{.0^2} + b.0 + c = 1\), từ đó suy ra c.
Tương tự, sử dụng giả thiết \(f(1) = 2,f(2) = 5,\)lập hệ phương trình 2 ẩn a, b.
b) Tập giá trị \(T = \{ f(x)|x \in D\} \) với D là tập xác định của hàm số \(f(x).\)
Với \(a = 1 > 0\): Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - \frac{b}{{2a}}} \right)\) và đồng biến trên khoảng \(\left( { - \frac{b}{{2a}}; + \infty } \right)\)
Lời giải chi tiết
a) Ta có: \(f(0) = a{.0^2} + b.0 + c = 1 \Rightarrow c = 1.\)
Lại có:
\(f(1) = a{.1^2} + b.1 + c = 2 \Rightarrow a + b + 1 = 2\)
\(f(2) = a{.2^2} + b.2 + c = 5 \Rightarrow 4a + 2b + 1 = 5\)
Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}a + b + 1 = 2\\4a + 2b + 1 = 5\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a + b = 1\\4a + 2b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\)(thỏa mãn điều kiện \(a \ne 0\))
Vậy hàm số bậc hai đó là \(y = f(x) = {x^2} + 1\)
b) Tập giá trị \(T = \{ {x^2} + 1|x \in \mathbb{R}\} \)
Vì \({x^2} + 1 \ge 1\;\forall x \in \mathbb{R}\) nên \(T = [1; + \infty )\)
Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.1}} = 0;{y_S} = f(0) = 1\)
Hay \(S\left( {0;1} \right).\)
Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:
Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\)
Bài 4 trang 56 SGK Toán 10 tập 1 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về tập hợp, các phép toán trên tập hợp, và các tính chất cơ bản của tập hợp để giải quyết các bài toán cụ thể. Bài tập này thường yêu cầu học sinh xác định các tập hợp, tìm phần tử thuộc tập hợp, thực hiện các phép hợp, giao, hiệu, bù của các tập hợp, và chứng minh các đẳng thức liên quan đến tập hợp.
Bài 4 thường bao gồm một số câu hỏi nhỏ, mỗi câu hỏi yêu cầu học sinh thực hiện một thao tác cụ thể trên các tập hợp cho trước. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và định nghĩa cơ bản về tập hợp, bao gồm:
Để giải bài 4 trang 56 SGK Toán 10 tập 1 – Chân trời sáng tạo, bạn có thể làm theo các bước sau:
Giả sử đề bài yêu cầu tìm tập hợp A ∪ B, với A = {1, 2, 3} và B = {3, 4, 5}.
Giải:
A ∪ B = {1, 2, 3, 4, 5}
Ngoài việc thực hiện các phép toán trên tập hợp, bài 4 trang 56 SGK Toán 10 tập 1 – Chân trời sáng tạo còn có thể xuất hiện các dạng bài tập sau:
Khi giải bài tập về tập hợp, bạn cần lưu ý những điều sau:
Để học tập và ôn luyện kiến thức về tập hợp, bạn có thể tham khảo các tài liệu sau:
Bài 4 trang 56 SGK Toán 10 tập 1 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về tập hợp và các phép toán trên tập hợp. Hy vọng rằng với hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, bạn sẽ có thể giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!