Logo Header
  1. Môn Toán
  2. Giải bài 10 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 10 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 10 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn cách giải bài 10 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.

Lớp 10C có 45 học sinh, trong đó có 18 học sinh tham gia cuộc thi vẽ đồ họa trên máy tính, 24 học sinh tham gia cuộc thi tin học văn phòng cấp trường và 9 học sinh không tham gia cả hai cuộc thi này. Hỏi có bao nhiêu học sinh của lớp 10C tham gia đồng thời hai cuộc thi?

Đề bài

Lớp 10C có 45 học sinh, trong đó có 18 học sinh tham gia cuộc thi vẽ đồ họa trên máy tính, 24 học sinh tham gia cuộc thi tin học văn phòng cấp trường và 9 học sinh không tham gia cả hai cuộc thi này. Hỏi có bao nhiêu học sinh của lớp 10C tham gia đồng thời hai cuộc thi?

Phương pháp giải - Xem chi tiếtGiải bài 10 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo 1

Gọi A là tập hợp các học sinh tham gia cuộc thi vẽ đồ họa trên máy tính và B là tập hợp các học sinh tham gia cuộc thi tin học văn phòng cấp trường.

Vẽ biểu đồ Ven.

Lời giải chi tiết

Gọi X là tập hợp các học sinh của lớp 10C.

A là tập hợp các học sinh tham gia cuộc thi vẽ đồ họa trên máy tính,

B là tập hợp các học sinh tham gia cuộc thi tin học văn phòng cấp trường.

Giải bài 10 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo 2

Theo biểu đồ Ven ta có: \(n(A) = 18,\;n(B) = 24,\;n(X) = 45.\)

\(n(A \cup B)\) là số học sinh tham gia ít nhất một trong hai cuộc thi, bằng: 45 -9 = 36 (học sinh)

Mà \(n(A \cup B) = n(A) + n(B) - n(A \cap B)\) (do các học sinh tham gia cả 2 cuộc thi được tính hai lần)

Suy ra số học sinh tham gia cả 2 cuộc thi là: \(n(A \cap B) = 18 + 24 - 36 = 6\)

Vậy có 6 học sinh của lớp 10C tham gia đồng thời hai cuộc thi.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 10 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo đặc sắc thuộc chuyên mục giải bài tập sgk toán 10 trên nền tảng toán học. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 10 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo: Tổng quan

Bài 10 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về tập hợp, các phép toán trên tập hợp, và các tính chất cơ bản của tập hợp để giải quyết các bài toán cụ thể. Bài tập này thường yêu cầu học sinh xác định các tập hợp, tìm phần tử thuộc tập hợp, thực hiện các phép hợp, giao, hiệu, bù của các tập hợp, và chứng minh các đẳng thức liên quan đến tập hợp.

Nội dung bài tập

Bài 10 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo thường bao gồm các dạng bài tập sau:

  • Xác định các tập hợp: Cho một tập hợp, yêu cầu xác định các phần tử thuộc tập hợp đó.
  • Thực hiện các phép toán trên tập hợp: Tính hợp, giao, hiệu, bù của các tập hợp cho trước.
  • Chứng minh đẳng thức tập hợp: Sử dụng các tính chất của tập hợp để chứng minh một đẳng thức cho trước.
  • Giải bài toán ứng dụng: Vận dụng kiến thức về tập hợp để giải quyết các bài toán thực tế.

Lời giải chi tiết bài 10 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo

Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài 10 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo, chúng tôi xin trình bày lời giải chi tiết như sau:

Câu a: (Ví dụ minh họa)

Cho A = {1, 2, 3, 4, 5} và B = {3, 4, 5, 6, 7}. Tìm A ∪ B.

Lời giải:

A ∪ B = {1, 2, 3, 4, 5, 6, 7}

Câu b: (Ví dụ minh họa)

Cho A = {1, 2, 3, 4, 5} và B = {3, 4, 5, 6, 7}. Tìm A ∩ B.

Lời giải:

A ∩ B = {3, 4, 5}

Câu c: (Ví dụ minh họa)

Cho A = {1, 2, 3, 4, 5} và B = {3, 4, 5, 6, 7}. Tìm A \ B.

Lời giải:

A \ B = {1, 2}

Các lưu ý khi giải bài tập về tập hợp

Để giải quyết các bài tập về tập hợp một cách hiệu quả, bạn cần lưu ý những điều sau:

  • Nắm vững định nghĩa và các tính chất của tập hợp: Hiểu rõ khái niệm tập hợp, phần tử thuộc tập hợp, các phép toán trên tập hợp, và các tính chất cơ bản của tập hợp.
  • Sử dụng các ký hiệu tập hợp một cách chính xác: Sử dụng đúng các ký hiệu ∪ (hợp), ∩ (giao), \ (hiệu), ∅ (tập rỗng), ∈ (thuộc), ∉ (không thuộc).
  • Phân tích bài toán một cách cẩn thận: Xác định rõ các tập hợp cho trước, yêu cầu của bài toán, và các phép toán cần thực hiện.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về tập hợp, bạn có thể tham khảo các bài tập tương tự sau:

  1. Cho A = {a, b, c, d} và B = {b, d, e, f}. Tìm A ∪ B, A ∩ B, A \ B, B \ A.
  2. Cho A = {1, 3, 5, 7, 9} và B = {2, 4, 6, 8, 10}. Tìm A ∪ B, A ∩ B.
  3. Chứng minh rằng A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

Kết luận

Bài 10 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh nắm vững kiến thức về tập hợp và các phép toán trên tập hợp. Hy vọng rằng với lời giải chi tiết và các lưu ý trên, các bạn học sinh sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc các bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 10