Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 10 trang 45 SGK Toán 10 tập 2 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.
Chứng minh rằng tứ giác ABCD là hình vuông
Đề bài
Cho bốn điểm \(A\left( {7; - 3} \right),B\left( {8;4} \right),C\left( {1;5} \right),D\left( {0; - 2} \right)\). Chứng minh rằng tứ giác ABCD là hình vuông
Phương pháp giải - Xem chi tiết
Bước 1: Tính độ dài các cạnh thông qua độ dài vecto => tứ giác là hình thoi
Bước 2: Chỉ ra một góc vuông thông qua tích vô hướng => đpcm
Lời giải chi tiết
Ta có: \(\overrightarrow {AB} = (1;7),\overrightarrow {AD} = ( - 7;1),\overrightarrow {CD} = ( - 1; - 7)\),\(\overrightarrow {BC} = ( - 7;1)\)
Suy ra \(AB = \overrightarrow {AB} = \sqrt {{1^2} + {7^2}} = 5\sqrt 2 ,AD = \overrightarrow {AD} = \sqrt {{{\left( { - 7} \right)}^2} + {1^2}} = 5\sqrt 2 ,\)
\(CD = \overrightarrow {CD} = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 7} \right)}^2}} = 5\sqrt 2 \),\(BC = \overrightarrow {BC} = \sqrt {{{\left( { - 7} \right)}^2} + {{\left( { - 1} \right)}^2}} = 5\sqrt 2 \)
\( \Rightarrow AB = BC = CD = DA = 5\sqrt 2 \) (1)
Mặt khác ta có
\(\cos \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AD} }}{{AB.AD}} = \frac{{1.( - 7) + 7.1}}{{5\sqrt 2 .5\sqrt 2 }} = 0 \Rightarrow \widehat A = 90^\circ \) (2)
Từ (1) và(2) suy ra ABCD là hình vuông (đpcm)
Bài 10 trang 45 SGK Toán 10 tập 2 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và đặc biệt là ứng dụng của vectơ trong việc chứng minh các tính chất hình học.
Bài 10 thường bao gồm các dạng bài tập sau:
Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài tập. Lưu ý rằng, trong quá trình giải bài, cần phải vẽ hình minh họa để dễ dàng hình dung và kiểm tra lại kết quả.
Trong phần này, học sinh cần xác định các vectơ có trong hình vẽ. Ví dụ, cho hình bình hành ABCD, hãy xác định các vectơ:
Phần này yêu cầu học sinh thực hiện các phép toán cộng, trừ, nhân vectơ. Ví dụ, cho hai vectơ a và b, hãy tính:
Để thực hiện các phép toán này, cần phải nhớ các quy tắc cộng, trừ, nhân vectơ.
Phần này yêu cầu học sinh chứng minh các đẳng thức vectơ. Ví dụ, chứng minh rằng AB + BC = AC. Để chứng minh đẳng thức này, cần sử dụng quy tắc cộng vectơ và vẽ hình minh họa.
Phần này yêu cầu học sinh ứng dụng vectơ để chứng minh các tính chất của hình bình hành, hình thang, tam giác,… Ví dụ, chứng minh rằng trong hình bình hành ABCD, AB = DC và AD = BC. Để chứng minh điều này, cần sử dụng các tính chất của hình bình hành và quy tắc cộng vectơ.
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập vectơ, bạn có thể tham khảo các bài tập tương tự sau:
Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập vectơ mà chúng tôi đã trình bày, các bạn học sinh sẽ tự tin hơn trong quá trình học tập môn Toán 10. Chúc các bạn học tốt!