Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo

Giải bài 2 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo

Giải bài 2 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 2 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong môn Toán.

Giải các phương trình sau

Đề bài

Giải các phương trình sau:

a) \(\sqrt {{x^2} + 3x + 1} = 3\)

b) \(\sqrt {{x^2} - x - 4} = x + 2\)

c) \(2 + \sqrt {12 - 2x} = x\)

d) \(\sqrt {2{x^2} - 3x - 10} = - 5\)

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo 1

Bước 1: Chuyển biểu thức có căn về một vế

Bước 2: Bình phương hai vế của phương trình để làm mất dấu căn

Bước 3: Chuyển vế, rút gọn đưa về phương trình bậc hai một ẩn

Bước 4: Giải phương trình nhận được ở bước 2

Bước 5: Thử lại nghiệm và kết luận

Lời giải chi tiết

a) \(\sqrt {{x^2} + 3x + 1} = 3\)

\(\begin{array}{l} \Rightarrow {x^2} + 3x + 1 = 9\\ \Rightarrow {x^2} + 3x - 8 = 0\end{array}\)

\( \Rightarrow x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)

Thay hai nghiệm trên vào phương trình \(\sqrt {{x^2} + 3x + 1} = 3\) ta thấy cả hai nghiệm đều thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)

b) \(\sqrt {{x^2} - x - 4} = x + 2\)

\(\begin{array}{l} \Rightarrow {x^2} - x - 4 = {\left( {x + 2} \right)^2}\\ \Rightarrow {x^2} - x - 4 = {x^2} + 4x + 4\\ \Rightarrow 5x = - 8\\ \Rightarrow x = - \frac{8}{5}\end{array}\)

Thay \(x = - \frac{8}{5}\) và phương trình \(\sqrt {{x^2} - x - 4} = x + 2\) ta thấy thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x = - \frac{8}{5}\)

c) \(2 + \sqrt {12 - 2x} = x\)

\(\begin{array}{l} \Rightarrow \sqrt {12 - 2x} = x - 2\\ \Rightarrow 12 - 2x = {\left( {x - 2} \right)^2}\\ \Rightarrow 12 - 2x = {x^2} - 4x + 4\\ \Rightarrow {x^2} - 2x - 8 = 0\end{array}\)

\( \Rightarrow x = - 2\) và \(x = 4\)

Thay hai nghiệm vừa tìm được vào phương trình \(2 + \sqrt {12 - 2x} = x\) thì thấy chỉ có \(x = 4\) thỏa mãn

Vậy \(x = 4\) là nghiệm của phương trình đã cho.

d) Ta có biểu thức căn bậc hai luôn không âm nên \(\sqrt {2{x^2} - 3x - 10} \ge 0\forall x \in \mathbb{R}\)

\( \Rightarrow \sqrt {2{x^2} - 3x - 10} = - 5\) (vô lí)

Vậy phương trình đã cho vô nghiệm

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 2 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo đặc sắc thuộc chuyên mục bài tập toán lớp 10 trên nền tảng toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 2 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo: Tổng quan

Bài 2 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của chúng.

Nội dung bài tập

Bài 2 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo thường bao gồm các dạng bài tập sau:

  • Xác định vectơ: Cho hình vẽ, yêu cầu xác định các vectơ có trong hình.
  • Thực hiện phép toán vectơ: Tính tổng, hiệu của các vectơ, tính tích của một số với vectơ.
  • Chứng minh đẳng thức vectơ: Sử dụng các tính chất của phép cộng, phép trừ vectơ, tích của một số với vectơ để chứng minh đẳng thức vectơ.
  • Ứng dụng vectơ vào hình học: Giải các bài toán liên quan đến hình học phẳng bằng phương pháp vectơ.

Lời giải chi tiết bài 2 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ cung cấp lời giải chi tiết cho từng phần của bài tập. Lưu ý rằng, lời giải này chỉ mang tính chất tham khảo, bạn nên tự mình suy nghĩ và giải bài tập trước khi xem lời giải để rèn luyện kỹ năng giải toán.

Phần a: ... (Giải chi tiết phần a của bài 2)

...

Phần b: ... (Giải chi tiết phần b của bài 2)

...

Phần c: ... (Giải chi tiết phần c của bài 2)

...

Các kiến thức liên quan cần nắm vững

Để giải quyết bài 2 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  • Khái niệm vectơ: Vectơ là gì, cách biểu diễn vectơ, các loại vectơ (vectơ cùng phương, vectơ bằng nhau).
  • Phép cộng, phép trừ vectơ: Quy tắc cộng, trừ vectơ, tính chất của phép cộng, phép trừ vectơ.
  • Tích của một số với vectơ: Quy tắc nhân vectơ với một số, tính chất của tích vectơ với một số.
  • Các tính chất của vectơ: Tính chất giao hoán, tính chất kết hợp, tính chất phân phối của phép cộng, phép trừ vectơ.

Mẹo giải bài tập vectơ

Dưới đây là một số mẹo giúp bạn giải bài tập vectơ một cách dễ dàng hơn:

  1. Vẽ hình: Vẽ hình minh họa cho bài tập sẽ giúp bạn hình dung rõ hơn về các vectơ và mối quan hệ giữa chúng.
  2. Sử dụng quy tắc hình bình hành: Quy tắc hình bình hành là một công cụ hữu ích để cộng, trừ vectơ.
  3. Biến đổi vectơ: Sử dụng các tính chất của vectơ để biến đổi các biểu thức vectơ về dạng đơn giản hơn.
  4. Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự

Để củng cố kiến thức về vectơ, bạn có thể làm thêm các bài tập tương tự sau:

  • Bài 3 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo
  • Bài 4 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo
  • Các bài tập trong sách bài tập Toán 10 tập 2

Kết luận

Hy vọng rằng, với lời giải chi tiết và các kiến thức, mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong việc giải bài 2 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo và các bài tập vectơ khác. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 10