Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 125 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 3 trang 125 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 3 trang 125 SGK Toán 10 tập 1 – Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 3 trang 125 SGK Toán 10 tập 1 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.

Hãy tìm độ lệch chuẩn, khoảng biến thiên, khoảng tứ phân vị của các mẫu số liệu sau:

Đề bài

Hãy tìm độ lệch chuẩn, khoảng biến thiên, khoảng tứ phân vị của các mẫu số liệu sau:

a)

Giá trị

-2

-1

0

1

2

Tần số

10

20

30

20

10

b)

Giá trị

0

1

2

3

4

Tần số

0,1

0,2

0,4

0,2

0,1

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 125 SGK Toán 10 tập 1 – Chân trời sáng tạo 1

Cho bảng số liệu:

Giá trị

\({x_1}\)

\({x_2}\)

\({x_m}\)

Tần số

\({f_1}\)

\({f_2}\)

\({f_m}\)

+) Số trung bình: \(\overline x = \frac{{{x_1}.{f_1} + {x_2}.{f_2} + ... + {x_m}.{f_m}}}{{{f_1} + {f_2} + ... + {f_m}}}\)

+) Phương sai \({S^2} = \frac{1}{n}\left( {{f_1}.{x_1}^2 + {f_2}..{x_2}^2 + ... + {f_n}..{x_n}^2} \right) - {\overline x ^2}\)

=> Độ lệch chuẩn \(S = \sqrt {{S^2}} \)

Sắp xếp mẫu số liệu theo thứ tự không giảm: \({X_1},{X_2},...,{X_n}\)

+) Khoảng biến thiên: \(R = {X_n} - {X_1}\)

Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

+) Khoảng tứ phân vị: \({\Delta _Q} = {Q_3} - {Q_1}\)

Lời giải chi tiết

a) +) Số trung bình \(\overline x = \frac{{ - 2.10 + ( - 1).10 + 0.30 + 1.20 + 2.10}}{{10 + 20 + 30 + 20 + 10}} = 0\)

+) phương sai hoặc \({S^2} = \frac{1}{90}\left( {10.{{( - 2)}^2} + 10.{{( - 1)}^2} + ... + {{10.2}^2}} \right) - {0^2} = 4 \over 3\)

=> Độ lệch chuẩn \(S \approx 1,155\)

+) Khoảng biến thiên: \(R = 2 - ( - 2) = 4\)

Tứ phân vị: \({Q_2} = 0;{Q_1} = - 1;{Q_3} = 1\)

+) Khoảng tứ phân vị: \({\Delta _Q} = 1 - ( - 1) = 2\)

b) Giả sử cỡ mẫu \(n = 10\). Khi đó mẫu số liệu trở thành:

Giá trị

0

1

2

3

4

Tần số

1

2

4

2

1

+) Số trung bình \(\overline x = \frac{{0.0,1 + 1.0,2 + 2.0,4 + 3.0,2 + 4.0,1}}{{0,1 + 0,2 + 0,4 + 0,2 + 0,1}} = 2\)

+) phương sai hoặc \({S^2} = \frac{1}{1}\left( {0,{{1.0}^2} + 0,{{2.1}^2} + ... + 0,{{1.4}^2}} \right) - {2^2} = 1,2\)

=> Độ lệch chuẩn \(S \approx 1,1\)

+) Khoảng biến thiên: \(R = 4 - 0 = 4\)

Tứ phân vị: \({Q_2} = 2;{Q_1} = 1;{Q_3} = 3\)

+) Khoảng tứ phân vị: \({\Delta _Q} = 3 - 1 = 2\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 3 trang 125 SGK Toán 10 tập 1 – Chân trời sáng tạo đặc sắc thuộc chuyên mục giải bài tập toán 10 trên nền tảng soạn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 3 trang 125 SGK Toán 10 tập 1 – Chân trời sáng tạo: Tổng quan

Bài 3 trang 125 SGK Toán 10 tập 1 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.

Nội dung bài tập

Bài 3 thường bao gồm các dạng bài tập sau:

  • Tìm vectơ: Xác định các vectơ trong hình vẽ hoặc từ các điểm cho trước.
  • Thực hiện phép toán vectơ: Cộng, trừ vectơ, tính tích của một số với vectơ.
  • Chứng minh đẳng thức vectơ: Sử dụng các tính chất của phép toán vectơ để chứng minh các đẳng thức.
  • Ứng dụng vectơ vào hình học: Giải các bài toán liên quan đến trung điểm, trọng tâm, đường thẳng song song, đường thẳng vuông góc.

Lời giải chi tiết bài 3 trang 125 SGK Toán 10 tập 1 – Chân trời sáng tạo

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài 3:

Câu a)

Đề bài: (Ví dụ về đề bài câu a)

Lời giải: (Giải thích chi tiết từng bước giải câu a, sử dụng các công thức và định lý liên quan. Ví dụ: Sử dụng quy tắc cộng vectơ, quy tắc nhân vectơ với một số để tìm vectơ cần tìm.)

Câu b)

Đề bài: (Ví dụ về đề bài câu b)

Lời giải: (Giải thích chi tiết từng bước giải câu b, sử dụng các công thức và định lý liên quan. Ví dụ: Sử dụng tính chất của trung điểm để tìm tọa độ của vectơ.)

Câu c)

Đề bài: (Ví dụ về đề bài câu c)

Lời giải: (Giải thích chi tiết từng bước giải câu c, sử dụng các công thức và định lý liên quan. Ví dụ: Sử dụng điều kiện song song của hai đường thẳng để chứng minh đẳng thức vectơ.)

Các lưu ý khi giải bài tập về vectơ

Để giải bài tập về vectơ một cách hiệu quả, bạn cần lưu ý những điều sau:

  • Nắm vững các khái niệm cơ bản: Vectơ, độ dài vectơ, hướng của vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ.
  • Hiểu rõ các tính chất của phép toán vectơ: Tính giao hoán, tính kết hợp, tính chất phân phối.
  • Sử dụng hình vẽ: Vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về vectơ, bạn có thể tham khảo các bài tập tương tự sau:

  1. Bài 1 trang 120 SGK Toán 10 tập 1 – Chân trời sáng tạo
  2. Bài 2 trang 123 SGK Toán 10 tập 1 – Chân trời sáng tạo
  3. Bài 4 trang 127 SGK Toán 10 tập 1 – Chân trời sáng tạo

Kết luận

Hy vọng rằng với lời giải chi tiết và những lưu ý trên, bạn đã có thể giải bài 3 trang 125 SGK Toán 10 tập 1 – Chân trời sáng tạo một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!

Khái niệmGiải thích
VectơMột đoạn thẳng có hướng.
Phép cộng vectơQuy tắc hình bình hành hoặc quy tắc tam giác.

Tài liệu, đề thi và đáp án Toán 10