Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 35 SGK Toán 10 tập 2 – Chân trời sáng tạo

Giải bài 2 trang 35 SGK Toán 10 tập 2 – Chân trời sáng tạo

Giải bài 2 trang 35 SGK Toán 10 tập 2 – Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 2 trang 35 SGK Toán 10 tập 2 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong môn Toán.

Khai triển và rút gọn các biểu thức sau:

Đề bài

Khai triển và rút gọn các biểu thức sau:

a) \({\left( {2 + \sqrt 2 } \right)^4}\)

b) \({\left( {2 + \sqrt 2 } \right)^4} + {\left( {2 - \sqrt 2 } \right)^4}\)

c) \({\left( {1 - \sqrt 3 } \right)^5}\)

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 35 SGK Toán 10 tập 2 – Chân trời sáng tạo 1

Sử dụng công thức nhị thức Newton

Giải bài 2 trang 35 SGK Toán 10 tập 2 – Chân trời sáng tạo 2

Lời giải chi tiết

a) Áp dụng công thức nhị thức Newton, ta có

\(\begin{array}{l}{\left( {2 + \sqrt 2 } \right)^4} = {2^4} + {4.2^3}.\left( {\sqrt 2 } \right) + {6.2^2}.{\left( {\sqrt 2 } \right)^2} + 4.2.{\left( {\sqrt 2 } \right)^3} + {\left( {\sqrt 2 } \right)^4}\\ = \left[ {{2^4} + {{6.2}^2}.{{\left( {\sqrt 2 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^4}} \right] + \left[ {{{4.2}^3}.\left( {\sqrt 2 } \right) + 4.2.{{\left( {\sqrt 2 } \right)}^3}} \right]\\ = 68 + 48\sqrt 2 \end{array}\)

b) Áp dụng công thức nhị thức Newton, ta có

\({\left( {2 + \sqrt 2 } \right)^4} = {2^4} + {4.2^3}.\left( {\sqrt 2 } \right) + {6.2^2}.{\left( {\sqrt 2 } \right)^2} + 4.2.{\left( {\sqrt 2 } \right)^3} + {\left( {\sqrt 2 } \right)^4}\)

\({\left( {2 - \sqrt 2 } \right)^4} = \left( {2 +(- \sqrt 2 )} \right)^4= {2^4} + {4.2^3}.\left( { - \sqrt 2 } \right) + {6.2^2}.{\left( { - \sqrt 2 } \right)^2} + 4.2.{\left( { - \sqrt 2 } \right)^3} + {\left( { - \sqrt 2 } \right)^4}\)

Từ đó,

\(\begin{array}{l}{\left( {2 + \sqrt 2 } \right)^4} + {\left( {2 - \sqrt 2 } \right)^4} = 2\left[ {{2^4} + {{6.2}^2}.{{\left( {\sqrt 2 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^4}} \right]\\ = 2\left( {16 + 48 + 4} \right) = 136\end{array}\)

c) Áp dụng công thức nhị thức Newton, ta có

\(\begin{array}{l}{\left( {1 - \sqrt 3 } \right)^5} = \left( {1 +(- \sqrt 3 )} \right)^5= 1 + 5.\left( { - \sqrt 3 } \right) + 10.{\left( { - \sqrt 3 } \right)^2} + 10.{\left( { - \sqrt 3 } \right)^3} + 5.{\left( { - \sqrt 3 } \right)^4} + 1.{\left( { - \sqrt 3 } \right)^5}\\ = \left[ {1 + 10.{{\left( { - \sqrt 3 } \right)}^2} + 5.{{\left( { - \sqrt 3 } \right)}^4}} \right] + \left[ {5.\left( { - \sqrt 3 } \right) + 10.{{\left( { - \sqrt 3 } \right)}^3} + 1.{{\left( { - \sqrt 3 } \right)}^5}} \right]\\ = 76 - 44\sqrt 3 \end{array}\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 2 trang 35 SGK Toán 10 tập 2 – Chân trời sáng tạo đặc sắc thuộc chuyên mục giải bài tập toán 10 trên nền tảng môn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 2 trang 35 SGK Toán 10 tập 2 – Chân trời sáng tạo: Tổng quan

Bài 2 trang 35 SGK Toán 10 tập 2 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của chúng.

Nội dung bài tập

Bài 2 trang 35 SGK Toán 10 tập 2 – Chân trời sáng tạo thường bao gồm các dạng bài tập sau:

  • Tìm vectơ tổng, hiệu của hai vectơ: Yêu cầu học sinh thực hiện các phép toán cộng, trừ vectơ dựa trên tọa độ của chúng.
  • Tìm vectơ tích của một số với vectơ: Yêu cầu học sinh tính tích của một số thực với một vectơ, từ đó tìm được tọa độ của vectơ kết quả.
  • Chứng minh đẳng thức vectơ: Yêu cầu học sinh sử dụng các tính chất của phép cộng, phép trừ vectơ, tích của một số với vectơ để chứng minh một đẳng thức vectơ cho trước.
  • Ứng dụng vectơ vào giải quyết bài toán hình học: Yêu cầu học sinh sử dụng vectơ để chứng minh các tính chất của hình học, chẳng hạn như chứng minh hai đường thẳng song song, vuông góc, hoặc chứng minh một điểm nằm trên một đường thẳng.

Phương pháp giải bài tập

Để giải bài 2 trang 35 SGK Toán 10 tập 2 – Chân trời sáng tạo một cách hiệu quả, bạn có thể áp dụng các phương pháp sau:

  1. Nắm vững các khái niệm và định nghĩa: Đảm bảo bạn hiểu rõ các khái niệm về vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của chúng.
  2. Sử dụng tọa độ của vectơ: Chuyển các bài toán hình học sang dạng bài toán về tọa độ của vectơ để dễ dàng thực hiện các phép toán.
  3. Vận dụng các tính chất của phép toán vectơ: Sử dụng các tính chất của phép cộng, phép trừ vectơ, tích của một số với vectơ để đơn giản hóa bài toán và tìm ra lời giải.
  4. Vẽ hình minh họa: Vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.

Ví dụ minh họa

Ví dụ 1: Cho hai vectơ a = (1; 2)b = (-3; 4). Tính a + b.

Giải:a + b = (1 + (-3); 2 + 4) = (-2; 6)

Ví dụ 2: Cho vectơ a = (2; -1) và số thực k = 3. Tính ka.

Giải:ka = (3 * 2; 3 * (-1)) = (6; -3)

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, bạn có thể luyện tập thêm với các bài tập tương tự trong SGK Toán 10 tập 2 – Chân trời sáng tạo và các tài liệu tham khảo khác. Hãy chú trọng vào việc hiểu bản chất của bài toán và áp dụng các phương pháp giải phù hợp.

Lời khuyên

Học Toán đòi hỏi sự kiên trì và luyện tập thường xuyên. Đừng ngại hỏi thầy cô hoặc bạn bè nếu bạn gặp khó khăn trong quá trình học tập. Chúc bạn học tốt môn Toán!

Khái niệmĐịnh nghĩa
VectơMột đoạn thẳng có hướng.
Phép cộng vectơQuy tắc hình bình hành hoặc quy tắc tam giác.
Tích của một số với vectơMột vectơ mới có độ dài bằng tích của số đó với độ dài vectơ ban đầu.

Tài liệu, đề thi và đáp án Toán 10