Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 15 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 4 trang 15 SGK Toán 10 tập 1 – Chân trời sáng tạo

Giải bài 4 trang 15 SGK Toán 10 tập 1 – Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10 tập 1 Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn giải bài 4 trang 15 một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.

Cho các định lí: P: “Nếu hai tam giác bằng nhau thì diện tích của chúng bằng nhau”. Q: “Nếu a <b thì a + c < b + c” (a,b,c thuộc R). a) Chỉ ra giả thiết và kết luận của mỗi định lí. b) Phát biểu lại mỗi định lí đã cho, sử dụng thuật ngữ “điều kiện cần” hoặc “điều kiện đủ”. c) Mệnh đề đảo của mỗi định lí đó có là định lí không?

Đề bài

Cho các định lí:

P: “Nếu hai tam giác bằng nhau thì diện tích của chúng bằng nhau”.

Q: “Nếu \(a < b\) thì \(a + c < b + c\)” (\(a,b,c \in \mathbb{R}\)).

a) Chỉ ra giả thiết và kết luận của mỗi định lí.

b) Phát biểu lại mỗi định lí đã cho, sử dụng thuật ngữ “điều kiện cần” hoặc “điều kiện đủ”.

c) Mệnh đề đảo của mỗi định lí đó có là định lí không?

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 15 SGK Toán 10 tập 1 – Chân trời sáng tạo 1

+) Khi mệnh đề \(R \Rightarrow T\) là định lí, ta nói:

R là giả thiết, T là kết luận

R là điều kiện đủ để có T

T là điều kiện cần để có R

+) Mệnh đề đảo của mệnh đề \(R \Rightarrow T\) là mệnh đề \(T \Rightarrow R\).

Lời giải chi tiết

a)

Mệnh đề P có dạng \(R \Rightarrow T\)với R: “Hai tam giác bằng nhau” và T: “Diện tích của hai tam giác bằng nhau”

Giả thiết là mệnh đề R: “Hai tam giác bằng nhau”

Kết luận là mệnh đề T: “Diện tích của hai tam giác bằng nhau”

Mệnh đề Q có dạng \(A \Rightarrow B\)với A: “\(a < b\)” và B: “\(a + c < b + c\)”

Giả thiết là mệnh đề A: “\(a < b\)”

Kết luận là mệnh đề B: “\(a + c < b + c\)”

b)

+) Mệnh đề P có thể phát biểu lại như sau:

Hai tam giác bằng nhau là điều kiện đủ để có diện tích của chúng bằng nhau.

Diện tích của hai tam giác bằng nhau là điều kiện cần để hai tam giác bằng nhau.

+) Mệnh đề Q có thể phát biểu lại như sau:

\(a < b\) là điều kiện đủ để có \(a + c < b + c\).

\(a + c < b + c\)là điều kiện cần để có \(a < b\).

c)

Mệnh đề đảo của mệnh đề P có dạng \(T \Rightarrow R\), phát biểu là: “Nếu hai tam giác có diện tích bằng nhau thì hai tam giác đó bằng nhau”.

Mệnh đề này sai nên không là định lí.

Chẳng hạn: Tam giác ABC và tam giác DEF, có diện tích bằng nhau nhưng hai tam giác không bằng nhau.

Giải bài 4 trang 15 SGK Toán 10 tập 1 – Chân trời sáng tạo 2

Mệnh đề đảo của mệnh đề Q có dạng \(B \Rightarrow A\), phát biểu là: “Nếu \(a + c < b + c\)thì \(a < b\)”.

Mệnh đề này đúng nên nó cũng là định lí.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 4 trang 15 SGK Toán 10 tập 1 – Chân trời sáng tạo đặc sắc thuộc chuyên mục bài tập toán 10 trên nền tảng học toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 4 trang 15 SGK Toán 10 tập 1 – Chân trời sáng tạo: Tổng quan

Bài 4 trang 15 SGK Toán 10 tập 1 Chân trời sáng tạo thuộc chương 1: Mệnh đề và tập hợp. Bài tập này yêu cầu học sinh vận dụng kiến thức về các phép toán trên tập hợp, bao gồm hợp, giao, hiệu và phần bù của tập hợp để giải quyết các bài toán cụ thể. Việc nắm vững các khái niệm và quy tắc này là nền tảng quan trọng để học tốt các chương tiếp theo của môn Toán 10.

Nội dung bài tập

Bài 4 trang 15 SGK Toán 10 tập 1 Chân trời sáng tạo thường bao gồm các câu hỏi yêu cầu:

  • Xác định các phần tử thuộc tập hợp cho trước.
  • Thực hiện các phép toán trên tập hợp (hợp, giao, hiệu, phần bù).
  • Biểu diễn tập hợp bằng sơ đồ Venn.
  • Giải các bài toán ứng dụng liên quan đến tập hợp.

Lời giải chi tiết bài 4 trang 15 SGK Toán 10 tập 1 – Chân trời sáng tạo

Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào phân tích từng phần của bài tập và đưa ra lời giải chi tiết:

Câu a: ... (Giải thích chi tiết câu a)

...

Câu b: ... (Giải thích chi tiết câu b)

...

Câu c: ... (Giải thích chi tiết câu c)

...

Các khái niệm quan trọng liên quan đến bài tập

Để giải quyết bài 4 trang 15 SGK Toán 10 tập 1 Chân trời sáng tạo một cách hiệu quả, các em cần nắm vững các khái niệm sau:

  • Tập hợp: Một tập hợp là một nhóm các đối tượng xác định.
  • Phần tử: Mỗi đối tượng trong tập hợp được gọi là một phần tử.
  • Hợp của hai tập hợp (A ∪ B): Tập hợp chứa tất cả các phần tử thuộc A hoặc B (hoặc cả hai).
  • Giao của hai tập hợp (A ∩ B): Tập hợp chứa tất cả các phần tử thuộc cả A và B.
  • Hiệu của hai tập hợp (A \ B): Tập hợp chứa tất cả các phần tử thuộc A nhưng không thuộc B.
  • Phần bù của tập hợp A (A'): Tập hợp chứa tất cả các phần tử không thuộc A.

Mẹo giải bài tập về tập hợp

Dưới đây là một số mẹo giúp các em giải bài tập về tập hợp một cách dễ dàng hơn:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài tập và các tập hợp được đề cập.
  2. Sử dụng sơ đồ Venn: Sơ đồ Venn là một công cụ hữu ích để biểu diễn các tập hợp và các phép toán trên tập hợp.
  3. Áp dụng các công thức: Sử dụng các công thức về hợp, giao, hiệu và phần bù của tập hợp để giải quyết bài toán.
  4. Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự

Để củng cố kiến thức về tập hợp, các em có thể làm thêm các bài tập tương tự sau:

  • Bài 5 trang 15 SGK Toán 10 tập 1 Chân trời sáng tạo
  • Bài 6 trang 15 SGK Toán 10 tập 1 Chân trời sáng tạo
  • Các bài tập trong sách bài tập Toán 10 tập 1

Kết luận

Bài 4 trang 15 SGK Toán 10 tập 1 Chân trời sáng tạo là một bài tập quan trọng giúp các em nắm vững kiến thức về tập hợp và các phép toán trên tập hợp. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, các em sẽ tự tin hơn trong quá trình học tập môn Toán 10.

Tài liệu, đề thi và đáp án Toán 10