Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài 5 trang 13 SGK Toán 10 tập 2 – Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.
Mặt cắt ngang của mặt đường thường có hình dạng parabol để nước mưa dễ dàng thoát sang hai bên. Mặt cắt ngang của một con đường được mô tả bằng hàm số
Đề bài
Mặt cắt ngang của mặt đường thường có hình dạng parabol để nước mưa dễ dàng thoát sang hai bên. Mặt cắt ngang của một con đường được mô tả bằng hàm số \(y = - 0,006{x^2}\) với gốc tọa độ đặt tại tim đường và đơn vị đo là mét như hình 4. Với chiều rộng của đường như thế nào thì thì tim đường cao hơn đường không quá 15 cm?
Phương pháp giải - Xem chi tiết
Bước 1: Lập bất phương trình
Bước 2: Tìm nghiệm (nếu có) của tam thức bậc hai
Bước 3: Xét dấu của tam thức bậc hai
Lời giải chi tiết
15 cm = 0,15 m
Tại vì gốc tọa độ đặt tại tim đường nên độ cao của lề đường so với tim đường là âm
Để tim đường cao hơn đường không quá 15 cm thì ta có bất phương trình sau:
\( - 0,006{x^2} \ge - 0,15 \Leftrightarrow 0,006{x^2} - 0,15 \le 0\)
Xét tam thức bậc hai \(f\left( x \right) = 0,006{x^2} - 0,15\) có hai nghiệm phân biệt là \({x_1} = - 5;{x_2} = 5\) và \(a = 0,006 > 0\) nên \(f\left( x \right)\) dương khi x thuộc đoạn \(\left[ { - 5;5} \right]\)
Vậy khi chiều rộng của đường lớn hơn 10 m thì tim đường cao hơn đường không quá 15 cm
\(\left[ { - 5;5} \right]\)
Bài 5 trang 13 SGK Toán 10 tập 2 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của chúng.
Bài 5 bao gồm các câu hỏi và bài tập khác nhau, được chia thành các phần nhỏ để học sinh dễ dàng tiếp cận và giải quyết. Các bài tập thường yêu cầu:
Để giải câu a, ta cần xác định các vectơ liên quan đến hình chóp. Ví dụ, nếu hình chóp là S.ABCD, ta có thể xác định các vectơ như AB, AD, AS. Sau đó, ta sử dụng các phép toán vectơ để biểu diễn các vectơ khác qua các vectơ đã cho.
Câu b thường yêu cầu chứng minh một đẳng thức vectơ. Để làm điều này, ta cần sử dụng các tính chất của phép cộng, phép trừ vectơ, tích của một số với vectơ, và các quy tắc biến đổi vectơ.
Câu c có thể là một bài toán ứng dụng, yêu cầu tính độ dài của một đoạn thẳng, góc giữa hai vectơ, hoặc diện tích của một hình. Để giải quyết bài toán này, ta cần sử dụng các công thức và định lý liên quan đến vectơ.
Ngoài SGK Toán 10 tập 2 – Chân trời sáng tạo, bạn có thể tham khảo thêm các tài liệu sau để học tập và ôn luyện:
Bài 5 trang 13 SGK Toán 10 tập 2 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng rằng với những hướng dẫn chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong quá trình học tập môn Toán.