Lý thuyết Nhị thức Newton là một trong những kiến thức quan trọng trong chương trình Toán 10 Chân trời sáng tạo. Nắm vững lý thuyết này giúp học sinh giải quyết các bài toán về khai triển nhị thức một cách hiệu quả.
Tại giaitoan.edu.vn, chúng tôi cung cấp bài giảng chi tiết, dễ hiểu cùng với các bài tập có đáp án để bạn có thể tự học và ôn luyện một cách tốt nhất.
A. Lý thuyết 1. Một số công thức khai triển
A. Lý thuyết
1. Một số công thức khai triển
\({(a + b)^4} = C_4^0{a^4} + C_4^1{a^3}b + C_4^2{a^2}{b^2} + C_4^3{a^1}{b^3} + C_4^4{b^4}\) \( = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4{a^1}{b^3} + {b^4}\). |
\({(a + b)^5} = C_5^0{a^5} + C_5^1{a^4}b + C_5^2{a^3}{b^2} + C_5^3{a^2}{b^3} + C_5^4a{b^4} + C_5^5{b^5}\) \( = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\). |
Những công thức khai triển nói trên là công thức nhị thức Newton \({(a + b)^n}\) ứng với n = 4 và n = 5.
Chú ý: Các hệ số trong khai triển nhị thức Newton \({(a + b)^n}\) với n = 0; 1; 2; 3;… được viết thành từng hàng và xếp thành bảng số dưới đây. Bảng số này có quy luật: số đầu tiên và số cuối cùng của mỗi hàng đều là 1; tổng của hai số liên tiếp cùng hàng bằng số của hàng kế dưới ở vị trí giữa hai số đó (được chỉ bởi mũ tên trên bảng). Bảng số này được gọi là tam giác Pascal (đặt theo tên của nhà toán học, vật lý học, triết học người Pháp Blaise Pascal, 1623 – 1662).
2. Công thức khai triển tổng quát
\({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^k{a^{n - k}}{b^k} + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\). |
Nhận xét:
- Số hạng tổng quát trong khai triển của \({(a + b)^n}\) đều có dạng \(C_n^k{a^{n - k}}{b^k}\) \((0 \le k \le n)\).
- Từ công thức nhị thức Newton nói trên, ta có khai triển của \({(a - b)^n}\) như sau:
\({(a - b)^n} = C_n^0{a^n} - C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} - C_n^3{a^{n - 3}}{b^3} + ...\), ở đó các dấu “+”, “-“ xen kẽ nhau.
Ví dụ: \({(a - b)^3} = C_3^0{a^3} - C_3^1{a^{3 - 1}}b + C_3^2{a^{3 - 2}}{b^2} - C_3^3{a^{3 - 3}}{b^3} = C_3^0{a^3} - C_3^1{a^2}b + C_3^2a{b^2} - C_3^3{b^3}\).
Có thể xem thêm trong chuyên đề học tập Toán 10.
B. Bài tập
Bài 1: Khai triển biểu thức \({(x + 1)^4}\).
Giải:
Xác định số hạng: a = x, b = 1.
\({(x + 1)^4} = C_4^0{x^4} + C_4^1{x^3}.1 + C_4^2{x^2}{.1^2} + C_4^3{x^1}{.1^3} + C_4^4{.1^4} = {a^4} + 4{x^3} + 6{x^2} + 4x + 1\).
Bài 2: Khai triển biểu thức \({(x - 1)^4}\).
Giải:
Có hai cách khai triển, tùy thuộc vào việc đặt b = -1 hay b = 1.
Nếu coi a = x, b = -1:
\({(x - 1)^4} = C_4^0{x^4} + C_4^1{x^3}.( - 1) + C_4^2{x^2}.{( - 1)^2} + C_4^3{x^1}.{( - 1)^3} + C_4^4.{( - 1)^4} = {a^4} - 4{x^3} + 6{x^2} - 4x + 1\).
Hoặc có thể coi a = x, b = 1 và áp dụng công thức khai triển tổng quát:
\[{(a - b)^n} = C_n^0{a^n} - C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} - C_n^3{a^{n - 3}}{b^3} + ...\], khi đó sẽ nhận được kết quả như trên (xen kẽ dấu).
Bài 3:
a) Khai triển biểu thức \({(x - 2y)^4}\) và tìm hệ số của số hạng chứa \({y^4}\).
b) Khai triển biểu thức \({(3x - y)^5}\).
Giải:
a) Coi a = x, b = -2y.
\({(x - 2y)^4} = {\left[ {x + ( - 2y)} \right]^4} = {x^4} + 4{x^3}( - 2y) + 6{x^2}{( - 2y)^2} + 4x{( - 2y)^3} + {( - 2y)^4}\)
\( = {x^4} - 8{x^3}y + 24{x^2}{y^2} - 32x{y^3} + 16{y^4}\).
Số hạng chứa \({y^4}\) là \(16{y^4}\), hệ số là 16.
b) Coi a = 3x, b = -y.
\({(3x - y)^5} = {\left[ {3x + ( - y)} \right]^5}\)
\( = {\left( {3x} \right)^5} + 5.{(3x)^4}.( - y) + 10{(3x)^3}.{( - y)^2} + 10{(3x)^2}.{( - y)^3} + 5.(3x).{( - y)^4} + {( - y)^5}\)
\( = 243{x^5} - 405{x^4}y + 270{x^3}{y^2} - 90{x^2}{y^3} + 15x{y^4} - {y^5}\).
Bài 4:
a) Xác định hệ số của \({x^6}\) trong khai triển \({\left( {2x + 1} \right)^{12}}\).
b) Xác định hệ số của \({x^9}\) trong khai triển \({\left( {3x - 2} \right)^{18}}\).
Giải:
a) Số hạng chứa \({x^6}\) là \(C_{12}^6.{\left( {2x} \right)^6} = C_{12}^6{.2^6}{x^6}\). Hệ số của \({x^6}\) là \(C_{12}^6{.2^6}\).
b) Số hạng chứa \({x^9}\) là \(C_{18}^9.{\left( {3x} \right)^9}.{( - 2)^9} = C_{18}^9.{( - 2)^9}{3^9}{x^9} = - C_{18}^9{.2^9}{3^9}{x^9}\). Hệ số của \({x^9}\) là \( - C_{18}^9{.2^9}{3^9} = - C_{18}^9{.6^9}\).
Bài 5: Cho tập hợp A = { a; b; c; d; e }. Tập hợp A có bao nhiêu tập hợp con?
Giải:
Tập hợp A có 5 phần tử. Mỗi tập con của A có k phần tử (1 ≤ k ≤ 5) là một tổ hợp chập k của A. Do đó, số tập con như vậy bằng \(C_5^k\). Mặt khác, có một tập con của A không có phần tử nào (tập rỗng), tức có \(C_5^0 = 1\) tập con như vậy. Do đó, số tập con của A bằng \(C_5^0 + C_5^1 + C_5^2 + C_5^3 + C_5^4 + C_5^5\). Theo công thức nhị thức Newton, ta có \(C_5^0 + C_5^1 + C_5^2 + C_5^3 + C_5^4 + C_5^5 = {(1 + 1)^5} = {2^5}\).
Vậy A có \({2^5} = 32\) tập con.
Lý thuyết Nhị thức Newton là một công cụ mạnh mẽ trong đại số, cho phép chúng ta khai triển biểu thức (a + b)^n một cách hiệu quả, đặc biệt khi n là một số nguyên dương lớn. Trong chương trình Toán 10 Chân trời sáng tạo, lý thuyết này được trình bày một cách hệ thống, giúp học sinh hiểu rõ bản chất và ứng dụng của nó.
Lý thuyết Nhị thức Newton phát biểu rằng:
(a + b)^n = Cn0anb0 + Cn1an-1b1 + Cn2an-2b2 + ... + Cnna0bn
Trong đó:
Tam giác Pascal là một công cụ hữu ích để tính toán các hệ số nhị thức. Mỗi hàng của tam giác Pascal tương ứng với một giá trị của n, và các số trong hàng đó là các hệ số Cnk.
Ví dụ:
n | Hệ số |
---|---|
0 | 1 |
1 | 1, 1 |
2 | 1, 2, 1 |
3 | 1, 3, 3, 1 |
4 | 1, 4, 6, 4, 1 |
Lý thuyết Nhị thức Newton có nhiều ứng dụng trong toán học và các lĩnh vực khác, bao gồm:
Có một số tính chất quan trọng của hệ số nhị thức cần lưu ý:
Bài tập 1: Khai triển (x + 2)^3
Giải:
(x + 2)^3 = C30x320 + C31x221 + C32x122 + C33x023
= 1*x3*1 + 3*x2*2 + 3*x*4 + 1*1*8
= x3 + 6x2 + 12x + 8
Bài tập 2: Tìm hệ số của x2 trong khai triển (x - 1)^5
Giải:
Hệ số của x2 là C53 * x2 * (-1)3 = 10 * x2 * (-1) = -10x2. Vậy hệ số là -10.
Lý thuyết Nhị thức Newton có thể được mở rộng cho các số mũ không nguyên, nhưng việc tính toán trở nên phức tạp hơn và đòi hỏi kiến thức về giải tích.
Lý thuyết Nhị thức Newton là một công cụ quan trọng trong toán học, giúp chúng ta giải quyết các bài toán về khai triển nhị thức một cách hiệu quả. Việc nắm vững lý thuyết này và các tính chất liên quan là rất quan trọng để đạt kết quả tốt trong môn Toán 10 Chân trời sáng tạo.