Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong sách bài tập Toán 10 Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 5 trang 66, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, đồng thời giúp bạn hiểu rõ bản chất của từng bài toán.
Xét vị trí tương đối của các cặp đường thẳng
Đề bài
Xét vị trí tương đối của các cặp đường thẳng \({d_1}\) và \({d_2}\) sau đây:
a) \({d_1}:2x + y + 9 = 0\) và \({d_2}:2x + 3y - 9 = 0\)
b) \({d_1}:\left\{ \begin{array}{l}x = 2 + t\\y = 1 - 2t\end{array} \right.\) và \({d_2}:2x + y + 10 = 0\)
c) \({d_1}:\left\{ \begin{array}{l}x = 1 - t\\y = 8 - 5t\end{array} \right.\) và \({d_2}:5x - y + 3 = 0\)
Lời giải chi tiết
a) Vectơ pháp tuyến của \({d_1}\) và \({d_2}\) lần lượt là \(\overrightarrow {{n_1}} = \left( {2;1} \right),\overrightarrow {{n_2}} = \left( {2;3} \right)\)→ Hai đường thẳng cắt nhau
b) Vectơ pháp tuyến của \({d_1}\) và \({d_2}\) lần lượt là: \(\overrightarrow {{n_1}} = \left( {2;1} \right),\overrightarrow {{n_2}} = \left( {2;1} \right)\)
Ta thấy \(\overrightarrow {{n_2}} = \overrightarrow {{n_1}} \) → Hai đường thẳng song song hoặc trùng nhau
Xét \(A\left( {2;1} \right)\) thuộc \({d_1}\), ta thấy A không thuộc \({d_2}\) → Hai đường thẳng này song song với nhau
c) Vectơ pháp tuyến của \({d_1}\) và \({d_2}\) lần lượt là: \(\overrightarrow {{n_1}} = \left( {5; - 1} \right),\overrightarrow {{n_2}} = \left( {5; - 1} \right)\)
Ta thấy \(\overrightarrow {{n_2}} = \overrightarrow {{n_1}} \) → Hai đường thẳng song song hoặc trùng nhau
Xét \(A\left( {1;8} \right)\) thuộc \({d_1}\), ta thấy A cũng thuộc \({d_2}\) → Hai đường thẳng này trùng nhau
Bài 5 trang 66 SBT Toán 10 Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ, và các ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa vectơ, các phép cộng, trừ, nhân vectơ với một số thực, và cách biểu diễn vectơ trong hệ tọa độ.
Bài 5 thường bao gồm các dạng bài tập sau:
Để giải bài 5 trang 66 SBT Toán 10 Chân trời sáng tạo một cách hiệu quả, bạn cần:
Ví dụ: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng AB + AC = 2AM.
Giải:
Áp dụng quy tắc trung điểm, ta có: AM = (AB + AC) / 2. Nhân cả hai vế với 2, ta được: 2AM = AB + AC. Vậy, AB + AC = 2AM (đpcm).
Để học tốt môn Toán 10 và giải bài tập về vectơ, bạn có thể tham khảo các tài liệu sau:
Bài 5 trang 66 SBT Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn sẽ tự tin giải quyết bài tập này một cách hiệu quả. Chúc bạn học tốt!