Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 75 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 2 trang 75 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 2 trang 75 Sách bài tập Toán 10 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn cách Giải bài 2 trang 75 sách bài tập Toán 10 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập mới. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.

Viết phương trình chính tắc của các đường conic dưới đây. Gọi tên và tìm tọa độ các tiêu điểm của chúng

Đề bài

Viết phương trình chính tắc của các đường conic dưới đây. Gọi tên và tìm tọa độ các tiêu điểm của chúng

a) \(\left( {{C_1}} \right):7{x^2} + 13{y^2} = 1\)

b) \(\left( {{C_2}} \right):25{x^2} - 9{y^2} = 225\)

c) \(\left( {{C_3}} \right):x = 2{y^2}\)

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 75 sách bài tập toán 10 - Chân trời sáng tạo 1

Phương trình Elip có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} - {b^2}} \)

Phương trình Hypebol có dạng \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} + {b^2}} \)

Parabol \(\left( P \right)\) có dạng \({y^2} = 2px\) với \(p > 0\) có tiêu điểm \(F\left( {\frac{p}{2};0} \right)\), phương trình đường chuẩn \(\Delta :x = - \frac{p}{2}\)

Lời giải chi tiết

a) \(\left( {{C_1}} \right):7{x^2} + 13{y^2} = 1 \Rightarrow \frac{{{x^2}}}{{\frac{1}{7}}} + \frac{{{y^2}}}{{\frac{1}{{13}}}} = 1 \Rightarrow {a^2} = \frac{1}{7};{b^2} = \frac{1}{{13}}\)

\( \Rightarrow {c^2} = {a^2} - {b^2} = \frac{1}{7} - \frac{1}{{13}} = \frac{6}{{91}} \Rightarrow c = \sqrt {\frac{6}{{91}}} \)

\(\left( {{C_1}} \right)\) là elip có hai tiêu điểm \({F_1}\left( { - \sqrt {\frac{6}{{91}}} ;0} \right),{F_2}\left( {\sqrt {\frac{6}{{91}}} ;0} \right)\)

b) \(\begin{array}{l}\left( {{C_2}} \right):25{x^2} - 9{y^2} = 225 \Rightarrow \frac{{25{x^2}}}{{225}} - \frac{{9{y^2}}}{{225}} = 1 \Rightarrow \frac{{{x^2}}}{9} - \frac{{{y^2}}}{{25}} = 1\\ \Rightarrow {a^2} = 9;{b^2} = 25;{c^2} = {a^2} + {b^2} = 9 + 25 = 34 \Rightarrow c = \sqrt {34} \end{array}\)

\(\left( {{C_2}} \right)\) là hypebol có hai tiêu điểm \({F_1}\left( { - \sqrt {34} ;0} \right),{F_2}\left( {\sqrt {34} ;0} \right)\)

c) \(\left( {{C_3}} \right):x = 2{y^2} \Rightarrow {y^2} = \frac{1}{2}x \Rightarrow p = \frac{1}{4}\)

\(\left( {{C_3}} \right)\) là parabol có tiêu điểm \(F\left( {\frac{1}{8};0} \right)\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 2 trang 75 sách bài tập toán 10 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải bài tập sgk toán 10 trên nền tảng môn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 2 trang 75 Sách bài tập Toán 10 - Chân trời sáng tạo: Hướng dẫn chi tiết

Bài 2 trang 75 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về vectơ trong mặt phẳng. Để giải bài này, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng.
  • Ứng dụng của vectơ trong hình học: Chứng minh tính chất hình học, giải bài toán liên quan đến vectơ.

Phân tích bài toán

Trước khi đi vào giải chi tiết, chúng ta cần đọc kỹ đề bài và xác định yêu cầu của bài toán. Thông thường, bài toán sẽ yêu cầu chúng ta tính toán các đại lượng liên quan đến vectơ, chứng minh một đẳng thức vectơ, hoặc giải một bài toán hình học sử dụng vectơ.

Lời giải chi tiết bài 2 trang 75

Để cung cấp lời giải chi tiết, chúng ta cần biết nội dung cụ thể của bài 2 trang 75. Giả sử bài toán yêu cầu chúng ta tính độ dài của vectơ AB, với A(x1, y1) và B(x2, y2). Khi đó, công thức tính độ dài của vectơ AB là:

|AB| = √((x2 - x1)² + (y2 - y1)²)

Chúng ta sẽ thay các giá trị x1, y1, x2, y2 vào công thức trên để tính được độ dài của vectơ AB.

Ví dụ minh họa

Giả sử A(1, 2) và B(4, 6). Khi đó:

|AB| = √((4 - 1)² + (6 - 2)²) = √(3² + 4²) = √(9 + 16) = √25 = 5

Vậy độ dài của vectơ AB là 5.

Lưu ý khi giải bài tập về vectơ

  • Vẽ hình: Vẽ hình giúp chúng ta hình dung rõ hơn về bài toán và tìm ra hướng giải phù hợp.
  • Sử dụng công thức: Nắm vững các công thức liên quan đến vectơ và áp dụng chúng một cách chính xác.
  • Kiểm tra lại kết quả: Sau khi giải xong, chúng ta nên kiểm tra lại kết quả để đảm bảo tính chính xác.

Mở rộng kiến thức

Để hiểu sâu hơn về vectơ, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 10
  • Sách bài tập Toán 10
  • Các trang web học Toán online uy tín

Bài tập tương tự

Để rèn luyện kỹ năng giải bài tập về vectơ, bạn có thể thử giải các bài tập tương tự sau:

  1. Tính độ dài của vectơ CD, với C(2, -1) và D(5, 3).
  2. Tìm tọa độ của vectơ EF, biết E(0, 0) và F(3, -4).
  3. Chứng minh rằng hai vectơ a(1, 2) và b(-2, -4) cùng phương.

Kết luận

Hy vọng rằng với hướng dẫn chi tiết này, bạn đã có thể tự tin Giải bài 2 trang 75 sách bài tập Toán 10 - Chân trời sáng tạo. Hãy luyện tập thường xuyên để nắm vững kiến thức và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 10