Logo Header
  1. Môn Toán
  2. Giải bài 7 trang 10 SBT toán 10 - Chân trời sáng tạo

Giải bài 7 trang 10 SBT toán 10 - Chân trời sáng tạo

Giải bài 7 trang 10 SBT toán 10 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong sách bài tập (SBT) Toán 10 Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn cách giải bài 7 trang 10 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc tự học Toán đôi khi gặp nhiều khó khăn. Vì vậy, chúng tôi luôn cố gắng cung cấp những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chứng minh rằng a) \(2{x^2} + \sqrt 3 x + 1 > 0\) với mọi \(x \in \mathbb{R}\) b) \({x^2} + x + \frac{1}{4} \ge 0\) với mọi \(x \in \mathbb{R}\) c) \( - {x^2} < - 2x + 3\) với mọi \(x \in \mathbb{R}\)

Đề bài

Chứng minh rằng

a) \(2{x^2} + \sqrt 3 x + 1 > 0\) với mọi \(x \in \mathbb{R}\)

b) \({x^2} + x + \frac{1}{4} \ge 0\) với mọi \(x \in \mathbb{R}\)

c) \( - {x^2} < - 2x + 3\) với mọi \(x \in \mathbb{R}\)

Lời giải chi tiết

a) Tam thức \(2{x^2} + \sqrt 3 x + 1\) có \(\Delta = {\left( {\sqrt 3 } \right)^2} - 4.2 = - 5 < 0\) và \(a = 2 > 0\)

Suy ra \(2{x^2} + \sqrt 3 x + 1 > 0\forall x \in \mathbb{R}\) (đpcm)

b) Tam thức \({x^2} + x + \frac{1}{4}\) có \(\Delta = {1^2} - 4.\frac{1}{4} = 0\), có nghiệm kép \(x = - \frac{1}{2}\) và \(a = 1 > 0\)

Suy ra \({x^2} + x + \frac{1}{4} \ge 0\) với mọi \(x \in \mathbb{R}\) (đpcm)

c) \( - {x^2} < - 2x + 3\) với mọi \(x \in \mathbb{R}\) \( \Leftrightarrow {x^2} - 2x + 3 > 0\) với mọi \(x \in \mathbb{R}\)

Xét tam thức \({x^2} - 2x + 3\) ta có \(\Delta = {\left( { - 2} \right)^2} - 4.3 = - 8 < 0\) và \(a = 1 > 0\)

Suy ra \({x^2} - 2x + 3 > 0\) với mọi \(x \in \mathbb{R}\)\( \Leftrightarrow - {x^2} < - 2x + 3\) (đpcm)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 7 trang 10 SBT toán 10 - Chân trời sáng tạo đặc sắc thuộc chuyên mục học toán 10 trên nền tảng toán học. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 7 trang 10 SBT Toán 10 Chân trời sáng tạo: Tổng quan

Bài 7 trang 10 SBT Toán 10 Chân trời sáng tạo thuộc chương trình học về tập hợp và các phép toán trên tập hợp. Bài tập này yêu cầu học sinh vận dụng kiến thức về các khái niệm như tập hợp, phần tử của tập hợp, tập con, tập rỗng, và các phép toán hợp, giao, hiệu, bù để giải quyết các bài toán cụ thể.

Nội dung chi tiết bài 7 trang 10 SBT Toán 10 Chân trời sáng tạo

Bài 7 thường bao gồm các dạng bài tập sau:

  1. Xác định các tập hợp: Cho các tập hợp A, B, C, yêu cầu xác định các tập hợp hợp, giao, hiệu, bù của chúng.
  2. Chứng minh đẳng thức tập hợp: Chứng minh một đẳng thức tập hợp nào đó bằng cách sử dụng các tính chất của các phép toán trên tập hợp.
  3. Giải các bài toán ứng dụng: Áp dụng kiến thức về tập hợp để giải quyết các bài toán thực tế.

Hướng dẫn giải chi tiết bài 7 trang 10 SBT Toán 10 Chân trời sáng tạo

Để giải quyết bài 7 trang 10 SBT Toán 10 Chân trời sáng tạo một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  • Khái niệm tập hợp: Hiểu rõ định nghĩa về tập hợp, phần tử của tập hợp, tập con, tập rỗng.
  • Các phép toán trên tập hợp: Nắm vững các định nghĩa và tính chất của các phép toán hợp, giao, hiệu, bù.
  • Các quy tắc logic: Sử dụng các quy tắc logic để chứng minh đẳng thức tập hợp.

Ví dụ minh họa giải bài 7 trang 10 SBT Toán 10 Chân trời sáng tạo

Bài toán: Cho A = {1, 2, 3, 4}, B = {3, 4, 5, 6}. Tìm A ∪ B, A ∩ B, A \ B, B \ A.

Giải:

  • A ∪ B = {1, 2, 3, 4, 5, 6} (Tập hợp chứa tất cả các phần tử thuộc A hoặc B)
  • A ∩ B = {3, 4} (Tập hợp chứa tất cả các phần tử thuộc cả A và B)
  • A \ B = {1, 2} (Tập hợp chứa tất cả các phần tử thuộc A nhưng không thuộc B)
  • B \ A = {5, 6} (Tập hợp chứa tất cả các phần tử thuộc B nhưng không thuộc A)

Mẹo giải bài tập về tập hợp

Để giải các bài tập về tập hợp một cách nhanh chóng và chính xác, bạn có thể áp dụng một số mẹo sau:

  • Vẽ sơ đồ Venn: Sử dụng sơ đồ Venn để biểu diễn các tập hợp và các phép toán trên tập hợp. Điều này sẽ giúp bạn dễ dàng hình dung và giải quyết bài toán.
  • Sử dụng các tính chất của các phép toán: Áp dụng các tính chất của các phép toán hợp, giao, hiệu, bù để đơn giản hóa bài toán.
  • Kiểm tra lại kết quả: Sau khi giải xong bài toán, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập luyện tập thêm

Để củng cố kiến thức về tập hợp và các phép toán trên tập hợp, bạn có thể làm thêm các bài tập sau:

  • Bài 1 trang 10 SBT Toán 10 Chân trời sáng tạo
  • Bài 2 trang 10 SBT Toán 10 Chân trời sáng tạo
  • Bài 3 trang 10 SBT Toán 10 Chân trời sáng tạo

Kết luận

Bài 7 trang 10 SBT Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp bạn nắm vững kiến thức về tập hợp và các phép toán trên tập hợp. Hy vọng rằng với hướng dẫn chi tiết và các mẹo giải bài tập trên, bạn sẽ tự tin hơn trong quá trình học tập môn Toán.

Giaitoan.edu.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 10