Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 9 trang 9 sách bài tập Toán 10 Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và kèm theo các giải thích chi tiết để bạn có thể nắm vững kiến thức.
Xét tính đúng sai và viết mệnh đề phủ định của các mệnh đề sau:
Đề bài
Xét tính đúng sai và viết mệnh đề phủ định của các mệnh đề sau:
a) \(\exists x \in \mathbb{N},2{x^2} + x = 1\)
b) \(\forall x \in \mathbb{R},{x^2} + 5 > 4x\)
Phương pháp giải - Xem chi tiết
Bước 1: Giải phương trình và bất phương trình đã cho
Bước 2: Kết luận tính đúng sai và viết mệnh đề phủ định
Lời giải chi tiết
a) Giải phương trình \(2{x^2} + x = 1\)
\(\begin{array}{l} \Leftrightarrow 2{x^2} + x - 1 = 0\\ \Leftrightarrow \left( {2x - 1} \right)\left( {x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{1}{2}\\x = - 1\end{array} \right.\end{array}\)
Vậy mệnh đề \(\exists x \in \mathbb{N},2{x^2} + x = 1\) đúng
Mệnh đề phủ định: \(\forall x \in \mathbb{N},2{x^2} + x \ne 1\)
b) Giải bất phương trình \({x^2} + 5 > 4x\)
\(\begin{array}{l}{x^2} + 5 > 4x \Leftrightarrow {x^2} + 5 - 4x > 0\\ \Leftrightarrow {x^2} - 4x + 4 + 1 = {\left( {x - 2} \right)^2} + 1 \ge 1\\ \Rightarrow {x^2} + 5 > 4x\end{array}\)
Vậy mệnh đề \(\forall x \in \mathbb{R},{x^2} + 5 > 4x\) đúng
Mệnh đề phủ định: \(\exists x \in \mathbb{R},{x^2} + 5 < 4x\)
Bài 9 trang 9 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về tập hợp và các phép toán trên tập hợp. Bài tập này yêu cầu học sinh vận dụng kiến thức về các khái niệm như tập hợp, phần tử của tập hợp, tập con, tập rỗng, và các phép toán hợp, giao, hiệu, bù để giải quyết các bài toán cụ thể.
Bài 9 thường bao gồm các dạng bài tập sau:
Để giải bài 9 trang 9 sách bài tập Toán 10 Chân trời sáng tạo một cách hiệu quả, bạn cần:
Ví dụ 1: Cho A = {1, 2, 3, 4} và B = {3, 4, 5, 6}. Tính A ∪ B và A ∩ B.
Giải:
Khi giải các bài toán về tập hợp, bạn cần chú ý:
Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:
Bài 9 trang 9 sách bài tập Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp bạn nắm vững kiến thức về tập hợp và các phép toán trên tập hợp. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn có thể giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!