Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 1 trang 54 sách bài tập Toán 10 Chân trời sáng tạo. Bài viết này sẽ cung cấp phương pháp giải, đáp án chính xác và những lưu ý quan trọng để bạn nắm vững kiến thức.
Chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất, phù hợp với mọi trình độ học sinh. Hãy cùng theo dõi để hiểu rõ hơn về cách giải bài tập này nhé!
Hàm số nào trong các hàm sau đây không phải là hàm số bậc hai?
Đề bài
Hàm số nào trong các hàm sau đây không phải là hàm số bậc hai?
a) \(y = 3{x^2} + x - \sqrt 3 \)
b) \(y = {x^2} + \left| {x + 1} \right|\)
c) \(y = \left\{ \begin{array}{l}{x^2} + 1{\rm{ với }}x \ge 0\\ - 2{x^2} - x{\rm{ với }}x < 0\end{array} \right.\)
d) \(y = 2\left( {{x^2} + 1} \right) + 3x - 1\)
Lời giải chi tiết
Hàm số bậc hai là hàm số được cho bởi công thức có dạng
\(y = f\left( x \right) = a{x^2} + bx + c\) với a, b, c là các số thực và a khác 0
Từ đó suy ra hàm số \(y = {x^2} + \left| {x + 1} \right|\) và hàm số \(y = \left\{ \begin{array}{l}{x^2} + 1{\rm{ \,\,\,\,\,với \, }}x \ge 0\\ - 2{x^2} - x{\rm{ \,\,\,\,\,với \, }}x < 0\end{array} \right.\) không phải là hàm số bậc hai vì hàm số \(y = {x^2} + \left| {x + 1} \right|\) có chứa dấu trị tuyệt đối và hàm số \(y = \left\{ \begin{array}{l}{x^2} + 1{\rm{ \,\,\,\,\,với \, }}x \ge 0\\ - 2{x^2} - x{\rm{ \,\,\,\,\,với \, }}x < 0\end{array} \right.\) thì được cho bởi hai công thức
Bài 1 trang 54 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về tập hợp và các phép toán trên tập hợp. Bài tập này yêu cầu học sinh vận dụng kiến thức về các khái niệm như tập hợp, phần tử của tập hợp, tập con, tập rỗng, và các phép toán hợp, giao, hiệu, bù để giải quyết các bài toán cụ thể.
Bài 1 thường bao gồm các dạng bài tập sau:
Để giải bài 1 trang 54 sách bài tập Toán 10 Chân trời sáng tạo hiệu quả, bạn cần nắm vững các kiến thức sau:
Bài 1a: (Ví dụ minh họa - cần thay thế bằng nội dung bài tập thực tế)
Cho A = {1, 2, 3, 4} và B = {3, 4, 5, 6}. Tìm A ∪ B và A ∩ B.
Giải:
Bài 1b: (Ví dụ minh họa - cần thay thế bằng nội dung bài tập thực tế)
Cho A = {a, b, c} và B = {b, c, d}. Tìm A \ B và B \ A.
Giải:
Khi giải bài tập về tập hợp, bạn cần chú ý những điều sau:
Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự sau:
Bài 1 trang 54 sách bài tập Toán 10 Chân trời sáng tạo là một bài tập cơ bản giúp bạn làm quen với các khái niệm và phép toán trên tập hợp. Hy vọng với lời giải chi tiết và những lưu ý trên, bạn sẽ giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!