Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 9 trang 131 sách bài tập Toán 10 Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải bài 9 trang 131 một cách cẩn thận, kèm theo các bước giải chi tiết và giải thích rõ ràng.
Dãy số liệu 5; 6; 0; 3; 5; 10; 3; 4 có các giá trị ngoại lệ là:
Đề bài
Dãy số liệu 5; 6; 0; 3; 5; 10; 3; 4 có các giá trị ngoại lệ là:
A.0;
B. 10;
C. 0;10;
D. \(\emptyset \).
Phương pháp giải - Xem chi tiết
Bước 1: Sắp xếp số liệu theo thứ tự không giảm: \({x_1},{x_2},...,{x_n}\)
Bước 2: Tìm trung vị \({Q_2}\) của mẫu số liệu
Bằng \({x_m}\) nếu \(n = 2m - 1\); là \(\frac{1}{2}({x_m} + {x_{m + 1}})\) nếu \(n = 2m\)
Bước 3: Tìm tứ phân vị
Tính \({Q_1}\)là trung vị của nửa số liệu đã sắp xếp bên trái \({Q_2}\) (không bao gồm trung vị nếu n lẻ)
Tính \({Q_1}\)là trung vị của nửa số liệu đã sắp xếp bên phải \({Q_2}\) (không bao gồm trung vị nếu n lẻ)
Khoảng tứ phân vị: \(\Delta Q = {Q_3} - {Q_1}\)
x là giá trị ngoại lệ nếu \(x > {Q_3} + 1,5{\Delta _Q}\) hoặc \(x < {Q_1} - 1,5{\Delta _Q}\)
Lời giải chi tiết
+ Sắp xếp số liệu theo thứ tự không giảm
0 | 3 | 3 | 4 | 5 | 5 | 6 | 10 |
+ Tứ phân vị: \({Q_2} = \left( {4 + 5} \right):2 = 4,5\); \({Q_1} = \left( {3 + 3} \right):2 = 3;{Q_3} = \left( {5 + 6} \right):2 = 5,5 \Rightarrow \Delta Q = {Q_3} - {Q_1} = 2,5\)
Ta có \({Q_1} - 1,5.{\Delta _Q} = 3 - 1,5.2,5 = - 0,75\) và \({Q_3} + 1,5.{\Delta _Q} = 5,5 + 1,5.2,5 = 9,25\) nên mẫu có giá trị ngoại lệ là 10.
Chọn B.
Bài 9 trang 131 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của các phép toán này để giải quyết các bài toán liên quan đến hình học và đại số.
Bài 9 trang 131 thường bao gồm các dạng bài tập sau:
Để giải bài tập bài 9 trang 131 sách bài tập Toán 10 Chân trời sáng tạo một cách hiệu quả, bạn có thể áp dụng các phương pháp sau:
Ví dụ 1: Cho hai vectơ a = (2; -1) và b = (-3; 4). Tính a + b.
Giải:
a + b = (2 + (-3); -1 + 4) = (-1; 3)
Ví dụ 2: Cho vectơ a = (1; 2) và số thực k = -2. Tính ka.
Giải:
ka = (-2 * 1; -2 * 2) = (-2; -4)
Khi giải bài tập về vectơ, bạn cần chú ý đến các dấu ngoặc và thứ tự thực hiện các phép toán. Ngoài ra, hãy đảm bảo rằng bạn sử dụng đúng các công thức và tính chất của vectơ.
Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, bạn có thể thực hiện các bài tập sau:
Bài 9 trang 131 sách bài tập Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp bạn rèn luyện kỹ năng giải toán về vectơ. Bằng cách nắm vững kiến thức cơ bản, áp dụng các phương pháp giải phù hợp, và luyện tập thường xuyên, bạn sẽ có thể giải quyết bài tập này một cách dễ dàng và hiệu quả.