Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong sách bài tập Toán 10 Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 5 trang 79, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Chúng tôi hiểu rằng việc tự học Toán đôi khi gặp nhiều khó khăn. Vì vậy, chúng tôi luôn cố gắng cung cấp những giải pháp tối ưu, giúp bạn học tập hiệu quả nhất.
Tính khoảng cách giữa hai đường thẳng
Đề bài
Tính khoảng cách giữa hai đường thẳng \(\Delta :ax + by + c = 0\) và \(\Delta ':ax + by + d = 0\) (biết \(\Delta //\Delta '\))
Lời giải chi tiết
Khoảng cách giữa hai đường thẳng \(\Delta :ax + by + c = 0\) và \(\Delta ':ax + by + d = 0\) (khi \(\Delta //\Delta '\)) là khoảng cách từ M bất kì (thuộc \(\Delta \)) đến \(\Delta '\)
Gọi \(M\left( {{x_0};{y_0}} \right) \in \Delta \Rightarrow a{x_0} + b{y_0} + c = 0 \Rightarrow a{x_0} + b{y_0} + d = d - c\)
\( \Rightarrow d\left( {\Delta ,\Delta '} \right) = d(M;\Delta ') = \frac{{\left| {a{x_0} + b{y_0} + d} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \frac{{\left| {d - c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)
Bài 5 trang 79 SBT Toán 10 Chân trời sáng tạo thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, trừ vectơ, tích của một số với vectơ, và các tính chất của các phép toán này để giải quyết các bài toán liên quan đến hình học và đại số.
Bài 5 thường bao gồm các dạng bài tập sau:
Để giải bài 5 trang 79 SBT Toán 10 Chân trời sáng tạo một cách hiệu quả, bạn cần:
Bài tập: Cho hai vectơ a = (1; 2) và b = (-3; 4). Tính a + b và 2a.
Giải:
a + b = (1 + (-3); 2 + 4) = (-2; 6)
2a = (2 * 1; 2 * 2) = (2; 4)
Để học tập và ôn luyện kiến thức về vectơ hiệu quả, bạn có thể tham khảo các tài liệu sau:
Bài 5 trang 79 SBT Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về vectơ. Hy vọng với hướng dẫn chi tiết và các lưu ý trên, bạn sẽ giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!
Công thức quan trọng | Mô tả |
---|---|
a + b | Phép cộng vectơ: Cộng các hoành độ và tung độ tương ứng. |
a - b | Phép trừ vectơ: Trừ các hoành độ và tung độ tương ứng. |
ka | Tích của một số với vectơ: Nhân hoành độ và tung độ của vectơ với số k. |