Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 9 SBT toán 10 - Chân trời sáng tạo

Giải bài 3 trang 9 SBT toán 10 - Chân trời sáng tạo

Giải bài 3 trang 9 SBT Toán 10 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong sách bài tập Toán 10 Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn cách giải bài 3 trang 9 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập mới. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết và dễ tiếp thu nhất.

Tìm các giá trị của tham số m để: a) \(f\left( x \right) = \left( {{m^2} + 9} \right){x^2} + \left( {m + 6} \right)x + 1\) là một tam thức bậc hai có một nghiệm duy nhất b) \(f\left( x \right) = \left( {m - 1} \right){x^2} + 3x + 1\) là một tam thức bậc hai có hai nghiệm phân biệt c) \(f\left( x \right) = m{x^2} + \left( {m + 2} \right)x + 1\) là một tam thức bậc hai vô nghiệm

Đề bài

Tìm các giá trị của tham số m để:

a) \(f\left( x \right) = \left( {{m^2} + 9} \right){x^2} + \left( {m + 6} \right)x + 1\) là một tam thức bậc hai có một nghiệm duy nhất

b) \(f\left( x \right) = \left( {m - 1} \right){x^2} + 3x + 1\) là một tam thức bậc hai có hai nghiệm phân biệt

c) \(f\left( x \right) = m{x^2} + \left( {m + 2} \right)x + 1\) là một tam thức bậc hai vô nghiệm

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 9 SBT toán 10 - Chân trời sáng tạo 1

Sử dụng biệt thức delta \(\Delta = {b^2} - 4ac\)

Nếu \(\Delta < 0\) suy ra phương trình vô nghiệm

Nếu \(\Delta = 0\) suy ra phương trình có nghiệm kép

Nếu \(\Delta > 0\) suy ra phương trình hai nghiệm phân biệt

Lời giải chi tiết

a) Để \(f\left( x \right)\) là tam thức bậc hai thì \({m^2} + 9 \ne 0\) đúng với mọi \(m \in \mathbb{R}\)

Mặt khác, tam thức trên có một nghiệm duy nhất khi và chỉ khi \(\Delta = 0\)

hay \({\left( {m + 6} \right)^2} - 4.\left( {{m^2} + 9} \right) = 0 \Rightarrow - 3{m^2} + 12m = 0\) suy ra \(m = 0\) hoặc \(m = 4\)

Vậy khi \(m = 0\) hoặc \(m = 4\) thì \(f\left( x \right) = \left( {{m^2} + 9} \right){x^2} + \left( {m + 6} \right)x + 1\) là một tam thức bậc hai có một nghiệm duy nhất

b) Để \(f\left( x \right)\) là tam thức bậc hai thì \(m - 1 \ne 0 \Leftrightarrow m \ne 1\) (*)

Mặt khác, tam thức trên có hai nghiệm phân biệt khi và chỉ khi \(\Delta > 0\)

hay \({3^2} - 4.\left( {m - 1} \right) > 0 \Rightarrow - 4m + 13 > 0 \Leftrightarrow m < \frac{{13}}{4}\) (**)

Kết hợp (*) và (**) ta được \(m \in \left( { - \infty ;\frac{{13}}{4}} \right)\backslash 1\)

Vậy khi \(m \in \left( { - \infty ;\frac{{13}}{4}} \right)\backslash 1\) thì \(f\left( x \right) = \left( {m - 1} \right){x^2} + 3x + 1\) là một tam thức bậc hai có hai nghiệm phân biệt

c) Để \(f\left( x \right)\) là tam thức bậc hai thì \(m \ne 0\)

Mặt khác, tam thức trên vô nghiệm khi và chỉ khi \(\Delta < 0\)

hay \({\left( {m + 2} \right)^2} - 4m < 0 \Rightarrow {m^2} + 4 < 0\)

Ta có \({m^2} \ge 0\;\forall m \in \mathbb{R} \Rightarrow {m^2} + 4 \ge 4 > 0\;\forall m \in \mathbb{R}\),

Vậy không có giá trị m thỏa mãn yêu cầu bài toán

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 3 trang 9 SBT toán 10 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải bài tập sgk toán 10 trên nền tảng soạn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 3 trang 9 SBT Toán 10 - Chân trời sáng tạo: Tổng quan

Bài 3 trang 9 SBT Toán 10 Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về tập hợp, các phép toán trên tập hợp, và các tính chất cơ bản của tập hợp số. Bài tập này thường yêu cầu học sinh xác định các tập hợp con, tìm giao điểm, hợp, hiệu của các tập hợp, và chứng minh các đẳng thức liên quan đến tập hợp.

Nội dung bài 3 trang 9 SBT Toán 10 - Chân trời sáng tạo

Bài 3 thường bao gồm các câu hỏi và bài tập sau:

  • Xác định các tập hợp con của một tập hợp cho trước.
  • Tìm giao điểm, hợp, hiệu của hai hoặc nhiều tập hợp.
  • Chứng minh các đẳng thức liên quan đến tập hợp bằng cách sử dụng các tính chất của phép toán trên tập hợp.
  • Giải các bài toán thực tế liên quan đến tập hợp.

Phương pháp giải bài 3 trang 9 SBT Toán 10 - Chân trời sáng tạo

Để giải bài 3 trang 9 SBT Toán 10 Chân trời sáng tạo một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Khái niệm tập hợp: Hiểu rõ định nghĩa về tập hợp, phần tử của tập hợp, và các ký hiệu liên quan.
  2. Các phép toán trên tập hợp: Nắm vững các phép toán hợp, giao, hiệu, phần bù của tập hợp, và các tính chất của chúng.
  3. Các tính chất cơ bản của tập hợp số: Hiểu rõ các tính chất của tập hợp số tự nhiên, số nguyên, số hữu tỉ, số thực.

Ví dụ minh họa giải bài 3 trang 9 SBT Toán 10 - Chân trời sáng tạo

Ví dụ: Cho hai tập hợp A = {1, 2, 3, 4} và B = {3, 4, 5, 6}. Hãy tìm A ∪ B và A ∩ B.

Giải:

  • A ∪ B = {1, 2, 3, 4, 5, 6} (hợp của A và B là tập hợp chứa tất cả các phần tử thuộc A hoặc B).
  • A ∩ B = {3, 4} (giao của A và B là tập hợp chứa tất cả các phần tử thuộc cả A và B).

Lưu ý khi giải bài 3 trang 9 SBT Toán 10 - Chân trời sáng tạo

Khi giải bài 3 trang 9 SBT Toán 10 Chân trời sáng tạo, bạn cần lưu ý những điều sau:

  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài toán.
  • Sử dụng đúng các ký hiệu và thuật ngữ toán học.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng.

Bài tập vận dụng

Để củng cố kiến thức và kỹ năng giải bài 3 trang 9 SBT Toán 10 Chân trời sáng tạo, bạn có thể tự giải các bài tập sau:

  1. Cho A = {a, b, c} và B = {b, d, e}. Tìm A ∪ B, A ∩ B, A \ B, B \ A.
  2. Chứng minh rằng A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
  3. Cho A = {1, 2, 3} và B = {2, 4, 6}. Tìm tập hợp các phần tử thuộc A nhưng không thuộc B.

Tài liệu tham khảo

Để học tập và ôn luyện Toán 10 hiệu quả, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 10 Chân trời sáng tạo.
  • Sách bài tập Toán 10 Chân trời sáng tạo.
  • Các trang web học toán online uy tín như giaitoan.edu.vn.
  • Các video bài giảng Toán 10 trên YouTube.

Kết luận

Bài 3 trang 9 SBT Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về tập hợp và các phép toán trên tập hợp. Hy vọng rằng với những hướng dẫn và ví dụ minh họa trong bài viết này, bạn sẽ có thể giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 10