Logo Header
  1. Môn Toán
  2. Giải bài 12 trang 60 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 12 trang 60 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 12 trang 60 Sách bài tập Toán 10 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 12 trang 60 Sách bài tập Toán 10 - Chân trời sáng tạo. Bài viết này sẽ cung cấp cho bạn các bước giải bài tập một cách dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác, đầy đủ và cập nhật nhất để hỗ trợ bạn học Toán 10 hiệu quả. Hãy cùng theo dõi bài viết này để tìm hiểu cách giải bài tập một cách nhanh chóng và chính xác nhất.

Hãy tìm tọa độ một vectơ đơn vị

Đề bài

Cho vectơ \(\overrightarrow a = \left( {2;2} \right)\). Hãy tìm tọa độ một vectơ đơn vị \(\overrightarrow e \) cùng hướng với vectơ \(\overrightarrow a \)

Phương pháp giải - Xem chi tiếtGiải bài 12 trang 60 sách bài tập toán 10 - Chân trời sáng tạo 1

Cho hai vectơ \(\overrightarrow a = \left( {{a_1},{a_2}} \right),\overrightarrow b = \left( {{b_1},{b_2}} \right)\).

Hai vectơ được gọi là cùng hướng khi \(\overrightarrow a = k\overrightarrow b \left( {k > 0} \right)\)

Lời giải chi tiết

Ta có: \(\vec a = \left( {2;2} \right) = \frac{2}{k}\left( {k;k} \right) \)

\(\Rightarrow \) Với \(k>0\) thì \(\vec e = (k;k)\) là 1 vectơ cùng hướng với \(\overrightarrow a \) 

Để \(\vec e\) là vecto đơn vị thì \(\left| {\vec e} \right| = 1\)

\(\Leftrightarrow \sqrt {{k^2} + {k^2}} = 1 \Leftrightarrow 2{k^2} = 1 \Leftrightarrow k = \frac{{\sqrt 2 }}{2}\) (vì \(k>0\))

Vậy vecto đơn vị cùng hướng với \(\vec a\) là \(\vec e = (\frac{{\sqrt 2 }}{2};\frac{{\sqrt 2 }}{2})\).

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 12 trang 60 sách bài tập toán 10 - Chân trời sáng tạo đặc sắc thuộc chuyên mục sgk toán 10 trên nền tảng toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 12 trang 60 Sách bài tập Toán 10 - Chân trời sáng tạo: Tổng quan

Bài 12 trang 60 Sách bài tập Toán 10 - Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ và ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm cơ bản, nắm vững các công thức và kỹ năng giải toán vectơ.

Nội dung chi tiết bài 12 trang 60

Bài 12 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính toán các phép toán vectơ (cộng, trừ, nhân với một số thực).
  • Dạng 2: Chứng minh đẳng thức vectơ.
  • Dạng 3: Tìm tọa độ của vectơ.
  • Dạng 4: Ứng dụng vectơ để giải các bài toán hình học (chứng minh ba điểm thẳng hàng, hai đường thẳng song song, vuông góc,...).

Hướng dẫn giải chi tiết

Để giải bài 12 trang 60 Sách bài tập Toán 10 - Chân trời sáng tạo một cách hiệu quả, bạn cần:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho và kết quả cần tìm.
  2. Vẽ hình: Vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải phù hợp.
  3. Sử dụng các công thức và định lý: Áp dụng các công thức và định lý liên quan đến vectơ để giải bài toán.
  4. Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Bài toán: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng AB + AC = 2AM.

Giải:

Ta có: AM = AB + BM. Vì M là trung điểm của BC nên BM = MC. Do đó, BC = 2BM.

Mặt khác, AC = AM + MC = AM + BM.

Vậy, AB + AC = AB + (AM + BM) = AB + AM + BM = (AB + BM) + AM = AM + AM = 2AM.

Lưu ý quan trọng

Khi giải các bài toán về vectơ, bạn cần chú ý đến chiều của vectơ, hướng của vectơ và độ dài của vectơ. Ngoài ra, bạn cũng cần nắm vững các quy tắc cộng, trừ, nhân vectơ với một số thực.

Tài liệu tham khảo

Để học Toán 10 hiệu quả hơn, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 10 - Chân trời sáng tạo
  • Sách bài tập Toán 10 - Chân trời sáng tạo
  • Các trang web học Toán online uy tín

Kết luận

Hy vọng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 12 trang 60 Sách bài tập Toán 10 - Chân trời sáng tạo một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 10