Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong sách bài tập Toán 10 Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn cách giải bài 3 trang 79 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy logic và vận dụng kiến thức đã học. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết và kèm theo các giải thích cụ thể để giúp bạn hiểu rõ bản chất của vấn đề.
Tính độ dài đường cao AH
Đề bài
Cho tam giác ABC với tọa độ ba đỉnh là \(A\left( {1;1} \right),B\left( {3;1} \right),C\left( {1;3} \right)\). Tính độ dài đường cao AH
Phương pháp giải - Xem chi tiết
Độ dài đường cao AH là khoảng cách từ A đến đường thẳng BC
Lời giải chi tiết
+ Lập phương trình BC:
\(\overrightarrow {BC} = \left( { - 2;2} \right) \Rightarrow \overrightarrow n = \left( {1;1} \right)\) là VTPT của đt BC.
PT BC đi qua B(3;1) nhận làm \(\overrightarrow n = \left( {1;1} \right)\) VTPT là: \(1\left( {x - 3} \right) + 1\left( {y - 1} \right) = 0 \Rightarrow x + y - 4 = 0\)
+ Độ dài đường cao AH là khoản cách từ A đến đt BC.
\(AH = d\left( {A,BC} \right) = \frac{{\left| {1 + 1 - 4} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \frac{2}{{\sqrt 2 }} = \sqrt 2 \)
Bài 3 trang 79 SBT Toán 10 Chân trời sáng tạo thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của các phép toán này để giải quyết các bài toán liên quan đến hình học và đại số.
Bài 3 thường bao gồm các dạng bài tập sau:
Để giải bài 3 trang 79 SBT Toán 10 Chân trời sáng tạo một cách hiệu quả, bạn cần nắm vững các kiến thức cơ bản về vectơ và các phép toán vectơ. Dưới đây là hướng dẫn chi tiết cho từng dạng bài tập:
Để thực hiện các phép toán vectơ, bạn cần nhớ các quy tắc sau:
Ví dụ: Cho hai vectơ a = (2, 3) và b = (-1, 4). Tính a + b và 2a.
Giải:
Để chứng minh đẳng thức vectơ, bạn cần sử dụng các tính chất của phép cộng, phép trừ vectơ, tích của một số với vectơ để biến đổi vế trái thành vế phải (hoặc ngược lại).
Ví dụ: Chứng minh rằng a + b = b + a với mọi vectơ a và b.
Giải:
Ta có: a + b = (ax + bx, ay + by) và b + a = (bx + ax, by + ay). Vì phép cộng các số thực có tính giao hoán nên ax + bx = bx + ax và ay + by = by + ay. Do đó, a + b = b + a.
Khi ứng dụng vectơ vào hình học, bạn cần sử dụng vectơ để biểu diễn các điểm, đường thẳng, và các mối quan hệ giữa chúng. Ví dụ, bạn có thể sử dụng vectơ để chứng minh hai đường thẳng song song, hai tam giác bằng nhau, hoặc một điểm nằm trên một đường thẳng.
Hy vọng với hướng dẫn chi tiết này, bạn đã có thể tự tin giải bài 3 trang 79 SBT Toán 10 Chân trời sáng tạo. Hãy luyện tập thường xuyên để nắm vững kiến thức và kỹ năng giải toán vectơ nhé!