Bài 10 trang 15 SBT Toán 10 Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về tập hợp, các phép toán trên tập hợp để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 10 trang 15 SBT Toán 10 Chân trời sáng tạo, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Từ độ cao \({y_0}\) mét, một quả bóng được ném lên xiên một góc \(\alpha \) so với phương ngang với vạn tốc đầu \({v_0}\) có phương trình chuyển động
Đề bài
Từ độ cao \({y_0}\) mét, một quả bóng được ném lên xiên một góc \(\alpha \) so với phương ngang với vạn tốc đầu \({v_0}\) có phương trình chuyển động
\(y = \frac{{ - g}}{{2{v_0}^2{{\cos }^2}\alpha }}{x^2} + \left( {\tan \alpha } \right)x + {y_0}\) với \(g = 10\) m/s2
a) Viết phương trình chuyển động của quả bóng nếu \(\alpha = 30^\circ ,{y_0} = 2\) m và \({v_0} = 7\)m/s
b) Để ném được quả bóng qua bức tường cao 2,5 m thì người ném phải đứng cách tường bao xa?
Lưu ý: Đáp số làm tròn đến hàng phần trăm
Lời giải chi tiết
a) Thay \(\alpha = 30^\circ ,{y_0} = 2\) m và \({v_0} = 7\)m/s vào phương trình chuyển động ta có :
\(y = \frac{{ - 10}}{{{{2.7}^2}{{\cos }^2}30^\circ }}{x^2} + \left( {\tan 30^\circ } \right)x + 2 = - \frac{{20}}{{147}}{x^2} + \frac{{\sqrt 3 }}{3}x + 2\)
b) Để ném quả bóng qua bước tường cao 2,5 mét thì \(y > 2,5 \Leftrightarrow - \frac{{20}}{{147}}{x^2} + \frac{{\sqrt 3 }}{3}x + 2 > 2,5 \Leftrightarrow - \frac{{20}}{{147}}{x^2} + \frac{{\sqrt 3 }}{3}x - 0,5 > 0\)
Tam thức bậc hai \( - \frac{{20}}{{147}}{x^2} + \frac{{\sqrt 3 }}{3}x - 0,5\) có a<0 và hai nghiệm là \(x = \frac{{7\sqrt 3 }}{{10}}\) và \(x = \frac{{7\sqrt 3 }}{4}\)
Do đó \( - \frac{{20}}{{147}}{x^2} + \frac{{\sqrt 3 }}{3}x - 0,5 > 0 \Leftrightarrow x \in \left( {\frac{{7\sqrt 3 }}{{10}};\frac{{7\sqrt 3 }}{4}} \right)\)
\(\frac{{7\sqrt 3 }}{{10}} \approx 1,21;\frac{{7\sqrt 3 }}{4} \approx 3,03\)
Vậy người ném bóng cần đứng cách tường khoảng 1,21 m đến 3,03 m
Bài 10 trang 15 SBT Toán 10 Chân trời sáng tạo thuộc chương trình học về tập hợp và các phép toán trên tập hợp. Đây là một phần kiến thức nền tảng, quan trọng trong việc xây dựng các kiến thức toán học cao hơn. Bài tập này thường yêu cầu học sinh xác định các tập hợp, thực hiện các phép hợp, giao, hiệu, bù, và chứng minh các đẳng thức tập hợp.
Bài 10 trang 15 SBT Toán 10 Chân trời sáng tạo thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 10 trang 15 SBT Toán 10 Chân trời sáng tạo, chúng ta sẽ đi vào giải chi tiết từng câu hỏi.
Cho A = {1, 2, 3, 4} và B = {3, 4, 5, 6}. Tính A ∪ B.
Lời giải: A ∪ B = {1, 2, 3, 4, 5, 6}.
Cho A = {1, 2, 3, 4} và B = {3, 4, 5, 6}. Tính A ∩ B.
Lời giải: A ∩ B = {3, 4}.
Cho A = {1, 2, 3, 4} và B = {3, 4, 5, 6}. Tính A \ B.
Lời giải: A \ B = {1, 2}.
Để giải bài tập về tập hợp một cách hiệu quả, các em học sinh cần lưu ý những điều sau:
Kiến thức về tập hợp có ứng dụng rộng rãi trong nhiều lĩnh vực khác nhau, như:
Bài 10 trang 15 SBT Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về tập hợp và các phép toán trên tập hợp. Hy vọng với lời giải chi tiết và những lưu ý trên, các em sẽ tự tin hơn khi giải bài tập và đạt kết quả tốt trong môn Toán 10.